Centre No.				Paper Reference			Surname	Initial(s)			
Candidate No			4	4	0	0	/ .	3	H	Signature	

Examiner's use only						

London Examinations IGCSE Team Leader's use only **Mathematics**

Items included with question papers

Page Numbers	Leave Blank
3	
4	
5	
6	

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.

The paper reference is shown at the top of this page. Check that you have the correct question paper. Answer ALL the questions in the spaces provided in this question paper. Show all the steps in any calculations.

Information for Candidates

There are 20 pages in this question paper. All blank pages are indicated. The total mark for this paper is 100. The marks for parts of questions are shown in round brackets: e.g. (2).

You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

Paper Reference(s)

4400/3H

Paper 3H

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and

millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Higher Tier

Monday 10 May 2004 - Morning

Nil

W850/R4400/57570 4/4/4/1/3/1/3/1/3/1000

IGCSE MATHEMATICS 4400 FORMULA SHEET – HIGHER TIER

	Answer ALL TWENTY questions.	Leave blank
	Write your answers in the spaces provided.	
	You must write down all stages in your working.	
1.	In July 2002, the population of Egypt was 69 million. By July 2003, the population of Egypt had increased by 2%.	
	Work out the population of Egypt in July 2003.	
	million	Q1
	(Total 3 marks)	
2.	(a) Expand $3(2t+1)$	
	(1)	
	(b) Expand and simplify $(x+5)(x-3)$	
	(2)	
	(c) Factorise $10p - 13q$	
	(1)	
	(d) Factorise $n^2 + 4n$	
		Q2
	(Total 5 marks)	
N207	JURA3Turn over	

4. The diagram shows a pointer which spins about the centre of a fixed disc.

When the pointer is spun, it stops on one of the numbers 1, 2, 3 or 4. The probability that it will stop on one of the numbers 1 to 3 is given in the table.

Number	1	2	3	4
Probability	0.35	0.16	0.27	

Magda is going to spin the pointer once.

(a) Work out the probability that the pointer will stop on 4.

(b) Work out the probability that the pointer will stop on 1 or 3.

(2)

(Total 6 marks)

.....

.....

(2)

Omar is going to spin the pointer 75 times.

(c) Work out an estimate for the number of times the pointer will stop on 2.

blank

Leave

(2)

Q4

5.	(a) Express 200 as the product of its prime factors.	Leave blank
	(2)	
	(b) Work out the Lowest Common Multiple of 75 and 200.	
	(2)	Q5
	(Total 4 marks)	
6.	 Two points, A and B, are plotted on a centimetre grid. A has coordinates (2, 1) and B has coordinates (8, 5). (a) Work out the coordinates of the midpoint of the line joining A and B. (
	cm	
	cm (4)	Q6
	(Total 6 marks)	

7.	A = B =	$= \{1, 2, 3, 4\} \\= \{1, 3, 5\}$	Leave blank
	(a)	List the members of the set	
		(i) $A \cap B$,	
		(ii) $A \cup B$.	
		(2)	
	(b)	Explain clearly the meaning of $3 \in A$.	
		(1)	Q7
		(Total 3 marks)	
	(ii)	On the number line, represent the solution to part (i).	
		-4 -3 -2 -1 0 1 2 3 4	Q8
		(Total 4 marks)	
	7100 4	7 Turn over	
N20	710RA	Iurn over	

9. The grouped frequency table gives information about the distance each of 150 people travel to work.

Distance travelled (<i>d</i> km)	Frequency
$0 < d \le 5$	34
$5 < d \le 10$	48
$10 < d \le 15$	26
$15 < d \le 20$	18
$20 < d \le 25$	16
$25 < d \le 30$	8

(a) Work out what percentage of the 150 people travel more than 20 km to work.

(b) Work out an estimate for the mean distance travelled to work by the people.

..... km (4)

.....%

(2)

(c) Complete the cumulative frequency table.

Distance travelled (<i>d</i> km)	Cumulative frequency
$0 < d \le 5$	
$0 < d \le 10$	
$0 < d \le 15$	
$0 < d \le 20$	
$0 < d \le 25$	
$0 < d \le 30$	

(1)

Leave blank

14. The unfinished table and histogram show information from a survey of women about the number of calories in the food they eat in one day.

Leave blank

Number of calories (<i>n</i>)	Frequency
$0 < n \le 1000$	90
$1000 < n \le 2000$	
$2000 < n \le 2500$	140
$2500 < n \le 4000$	

Diagram **NOT** accurately drawn

Q, R, S and T are points on the circumference of a circle. PU is a tangent to the circle at T. PQR is a straight line. Angle $PQT = 108^{\circ}$. Angle $STR = 44^{\circ}$.

Work out the size of angle *STU*. You must give a reason for each step in your working.

• **Q20**

(Total 5 marks)

TOTAL FOR PAPER: 100 MARKS

END

Edexcel International London Examinations IGCSE

IGCSE Mathematics (4400)

Mark Schemes for May 2004 examination session

Paper 3H (Higher Tier)

N	lo	Working	Answer	Mark	Notes		
1		$\frac{2}{100} \times 69$ or 1.38		3	M1		or M2 for 69 × 1.02
		69 + "1.38"			M1	dep on 1 st M1	
			70.38		A1	Accept 70.4	I
						Condone 70 380	0000, 70 400 000
2	а		6 <i>t</i> + 3	1	B1	cao	
	b	$x^2 - 3x + 5x - 15$		2	M1	for 4 terms ignor with correct sign	ring signs or 3 terms
	c		$x^{2} + 2x - 15$		A1	-	
			5(2p-3q)	1	B1		
	d		n(n+4)	1	B1		
3	а	$\pi \times 4.7^2$		2	M1		
			69.4		A1	for 69.4 or bette	r (69.39778)
	b	Splits shape appropriately eg triangle & 2 rectangles, rectangle & trapezium		4	M1		· · · ·
		eg $7 \times 2 + 6 \times 4$ or $14 + 24$			M1	for area of at lea	st one rectangle
		$\frac{1}{2} \times 3 \times 4$ or 6			M1	for area of triang	gle or trapezium
			44		A1	cao	
4	ai	1 - (0.35 + 0.16 + 0.27)		4	M1		
			0.22		A1	oe	
	ii	0.35 + 0.27			M1		
			0.62		A1	oe	
	b	0.16×75		2	M1		
			12		A1	cao	

Ι	No	Working	Answer	Mark		Notes	
5	а	prime factors 2 & 5 seen		2	M1		
			$2 \times 2 \times 2 \times 5 \times 5$		A1		
			or $2^3 \times 5^2$				
	b	$2 \times 2 \times 2 \times 3 \times 5 \times 5$		2	M1	for $2 \times 2 \times 2 \times 3 \times 5 \times 5$ or for	lists of multiples
						with at least 3 correct in each	n list
			600		A1	cao	
6	а		(5, 3)	2	B2	B1 for each coordinate	
	b	8-2=6 & 5-1=4		4	B1		
		$6^2 + 4^2$ or $36 + 16$ or 52			M1	for squaring & adding	Either 6 or 4 must
		$\sqrt{6^2 + 4^2}$ or $\sqrt{52}$ (7.2110)			M1	(dep on 1st M1) for square	be correct for award of M marks
			7.21		A1	for 7.21 or better	I
7	i		1, 3	3	B1	Condone repetition	
	ii		1, 2, 3, 4, 5		B1	Condone repetition	
	iii		"is a member of" oe		B1		
8	i	3x > -6		4	M1	SC if M0, award B1 for -2	
			x > -2		A1		
	ii		line to right of -2		B1	1 ft from (i) line must either have arrow or reach	
			open circle at -2		B1	ft from (i)	

No	Working	Answer	Mark	Notes
9 a	$\frac{16+8}{150}$ or $\frac{24}{150}$ or 0.16		2	M1
		16		A1 cao
b	$34 \times 2.5 + 48 \times 7.5 + 26 \times 12.5$		4	M1 finds products $f \times x$ consistently within
	$+18 \times 17.5 + 16 \times 22.5 + 8 \times 27.5$			intervals (inc end points) and sums them
	or 85+360+325+315+360+220 or 1665			M1 use of midpoints
	"1665"			M1 (dep on 1st M1) for division by 150
	150			
		11.1		A1 Accept 11 if $\frac{1665}{150}$ seen
c		34, 82, 108, 126, 142, 150	1	B1 cao
d		Points	2	B1 $\pm \frac{1}{2}$ square ft from sensible table
		Curve		B1 or line segments (dep on 5 pts correct or ft correctly or 5 ordinates from (c) plotted correctly and consistently within intervals but not above end points)
e	cf of 75 (or $75\frac{1}{2}$) used		2	M1
		~ 9		A1 ft from sensible graph
10	$\pi \times 12$ or 37.6991		4	M1
	÷4			M1 (dep)
				SC B2 for 3π or 9.4247 seen
	$+2 \times 6 \text{ or } +12$			B1 (indep)
		21.4		A1 for 21.4 or better (21.4247)

I	No	Working	Answer	Mark		Notes
11	а		1.5×10^{8}	1	B1	cao
	b		4.5×10^{9}	2	M1	4.5×10^n for integer $n > 0$
					A1	for $n = 9$
						SC B1 for 4.5 ⁰⁹
12	а	4y = 3x - 15		3	M1	
		$y = \frac{3}{4}x - \frac{15}{4}$			M1	for $\frac{"3x - 15"}{4}$
			$\frac{3}{4}$		A1	ft from $\frac{"3x - 15"}{4}$
	b	eg Eqn (A)×3 or Eqn(B)×2 or Eqn(A)×5 or Eqn(B)×3		4	M1	for clear attempt at first step in correct process to eliminate either or y
		eg $\frac{\text{Eqn (A)} \times 3 + \text{Eqn(B)} \times 2}{\text{or Eqn(A)} \times 5 - \text{Eqn(B)} \times 3}$			M1	Completes correct process to eliminate either <i>x</i> or <i>y</i> (Condone one error)
		eg x = 3			A1	cao for non-eliminated one
			$(3,-1\frac{1}{2})$		A1	cao
13	а		$3t^2 + 8t - 5$	2	B2	(B1 for 2 terms correct)
	b	6t + 8		2	M1	for $6t + 8$ or d(a)/dt if at least B1 scored
			20		A1	ft
14	ai		bar correct	3	B1	$28 \pm \frac{1}{2}$ sq
	ii		130, 120		B2	B1 cao for each value
	b	$\Sigma f = 480, \frac{3}{4} \times 480 = 360$		2	M1	
			2500		A1	ft from "480" ie Σf

N	0	Working	Answer	Mark		Notes
15	а	6.805×4		2	M1	
			27.22		A1	cao
	b	$6.815 \times 4 = 27.26$		2	M1	
			27		A1	cao
16		(2x+5)(x-4)		3	M1	
		(x+4)(x-4)			M1	
			2x + 5		A1	cao
			$\overline{x+4}$			
17	ai	$R = \frac{k}{r^2}$		4	M1	
			$R = \frac{3.6}{r^2}$		A1	
	ii		R r		B2	B1 for graph with negative gradient (increasing or constant) even if it touches of crosses one or both axes eg
	b		0.4	1	B1	ft from <i>k</i>

N	0	Working	Answer	Mark	Notes
18	а	$3.6 \times 2.8 = 2.4 \times BE$		3	M1 Accept $AE \times CE = BE \times ED$
		3.6×2.8			M1
		2.4			
			4.2		A1 cao
	b	$3.6^2 + 2.4^2 - 4.9^2$		3	M1
		$2 \times 3.6 \times 2.4$			
		- 0.3061			A1 at least 3 sf
			108		A1 for 108 or better (107.826)
19	ai		5	2	B1 cao
	ii		0		B1 cao
	b	eg $\stackrel{\times 2 \rightarrow -1}{ 3 \leftarrow +1}$ or attempt to make x the		2	M1
		subject of $y = 2x - 1$			
			$\frac{x+1}{2}$ oe		A1
	ci		$\frac{2}{3}$	2	B1
	ii		$\begin{array}{c c} 2x-1\\ \frac{1}{2} \end{array}$		B1

No	Working	Answer	Mark	Notes
20	$\angle RST = 108^{\circ}$		5	B1
	opposite angles of a cyclic quadrilateral			B1 or exterior angle = opposite interior angle Accept <i>cyclic quadrilateral</i>
	$\angle SRT = 28^{\circ}$			B1
	angle between chord & tangent = angle in alternate segment			B1 Accept alternate segment or chord & tangent
		28		B1
	or			
	$\angle RST = 108^{\circ}$		5	B1
	opposite angles of a cyclic quadrilateral			B1 or exterior angle = opposite interior angle Accept <i>cyclic quadrilateral</i>
	$\angle PTR = 108^{\circ}$			B1
	angle between chord & tangent = angle in alternate segment			B1 Accept alternate segment or chord & tangent
		28		B1
	or			
	$\angle UTR = 72^{\circ}$		5	B2
	angle between chord & tangent = angle in alternate segment			B1 Accept alternate segment or chord & tangent
		28		B2 B1 for 72 – 44

Centre No.					Paper	Referen	ice			Surname	Initial(s)
Candidate No			4	4	0	0	/	4	H	Signature	

	Exam	iner's us	e only
CSE	Team L	eader's u	ise only

Page Numbers	Leave Blank
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
Total	

Turn over

		.()	
44	00	/4	Η

Paper Reference(s)

London Examinations IGCSE

Mathematics

Paper 4H

Higher Tier

Tuesday 11 May 2004 - Morning

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.

The paper reference is shown at the top of this page. Check that you have the correct question paper. Answer **ALL** the questions in the spaces provided in this question paper. Show all the steps in any calculations.

Information for Candidates

There are 16 pages in this question paper. All blank pages are indicated. The total mark for this paper is 100. The marks for parts of questions are shown in round brackets: e.g. (2).

You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

	Answer ALL TWENTY TWO questions.		Leave blank
	Write your answers in the spaces provided.		
	You must write down all stages in your working.		
1.	Work out the value of $\frac{6.1+3.4}{5.7-1.9}$		
			Q1
		(Total 2 marks)	
2.	Suhail cycles 117 km in 4 hours 30 minutes. Work out his average speed in km/h.		
		km/h	Q2
		(Total 3 marks)	
3.	The word formula gives the time, in minutes, needed to cook a turkey.		
	Time = $40 \times$ weight in kg + 20		
	A time of T minutes is needed to cook a turkey with a weight of W kg.		
	Write down a formula for T in terms of W .		
			Q3
		(Total 2 marks)	
N20 ⁷	711RA 3	Turn over	

-	The mean height of a group of 4 girls is 158 cm.		$\begin{vmatrix} Le \\ b \end{vmatrix}$
((a) Work out the total height of the 4 girls.		
		cm	
		(1)	
	Sarah joins the group and the mean height of the 5 girls is 156 cm.		
((b) Work out Sarah's height.		
		cm	Q4
		(3)	
]	Plumbers' solder is made from tin and lead. The ratio of the weight of tin to the weight of lead is 1:2	1 1 3 11	
]	Plumbers' solder is made from tin and lead. The ratio of the weight of tin to the weight of lead is 1:2 (a) Work out the weight of tin and the weight of lead in 120 grams of p	plumbers' solder.	
]	Plumbers' solder is made from tin and lead. The ratio of the weight of tin to the weight of lead is 1:2 (a) Work out the weight of tin and the weight of lead in 120 grams of p	plumbers' solder.	
]	Plumbers' solder is made from tin and lead. The ratio of the weight of tin to the weight of lead is 1:2 (a) Work out the weight of tin and the weight of lead in 120 grams of p	plumbers' solder. tin g	
]	Plumbers' solder is made from tin and lead. The ratio of the weight of tin to the weight of lead is 1:2 (a) Work out the weight of tin and the weight of lead in 120 grams of p	blumbers' solder. tin g lead g (2)	
)))))))	Plumbers' solder is made from tin and lead. The ratio of the weight of tin to the weight of lead is 1:2 (a) Work out the weight of tin and the weight of lead in 120 grams of p (b) What weight of plumbers' solder contains 25 grams of tin?	tin g lead g	
]	Plumbers' solder is made from tin and lead. The ratio of the weight of tin to the weight of lead is 1 : 2 (a) Work out the weight of tin and the weight of lead in 120 grams of p (b) What weight of plumbers' solder contains 25 grams of tin?	blumbers' solder. tin g lead g (2)	04
] (Plumbers' solder is made from tin and lead. The ratio of the weight of tin to the weight of lead is 1:2 (a) Work out the weight of tin and the weight of lead in 120 grams of p (b) What weight of plumbers' solder contains 25 grams of tin?	tin g lead g (2) g (1)	Q

3.	Thi	s formula is used in science.	Leave
		$v = \sqrt{2gh}$	
	(a)	Hanif uses the formula to work out an estimate for the value of v without using a calculator when $g = 9.812$ and $h = 0.819$	
		Write down approximate values for g and h that Hanif could use.	
		approximate value for g	
		approximate value for h (2)	
	(b)	Make <i>h</i> the subject of the formula $v = \sqrt{2gh}$	
		$h = \dots $	Q8
		(Z) (Total 4 marks)	
).	(a)	Simplify $n \times n \times n \times n$	
		(1)	
	(b)	Simplify $p^2 \times p^5$	
		(1)	
	(c)	Simplify $\frac{q^7}{q^3}$	
	(d)	(1) Simplify $\frac{t^4 \times t^7}{t^8}$	
		I	
		(1)	Q9
		(Total 4 marks)	

(b) Harry is going to spin the spinner 3 times.

Leave blank

18. (a) Complete the table of values for $y = x^3 - 3x^2 + 2$

x	-2	-1	0	1	2	3	4
У		-2					

(b) On the grid, draw the graph of $y = x^3 - 3x^2 + 2$

(2)

Leave blank

(2)

Leave blank

21. Solve the simultaneous equations

Leave blank

$$2x + y = 6$$
$$x^2 + y^2 = 20$$

Q21

(Total 7 marks)

Edexcel International London Examinations IGCSE

IGCSE Mathematics (4400)

Mark Schemes for May 2004 examination session

Paper 4H (Higher Tier)

No	Working	Answer	Mark		Notes
1	9.5		2	M1	for 9.5 or 3.8 seen
	$\overline{3.8}$				
		2.5		A1	cao
2	4.5 oe seen		3	B1	
	117			M1	<u>, 117 117</u>
	"4.5"				for $\frac{1}{\text{time}} \exp \frac{1}{270}$
		26		A1	cao
3		T = 40W + 20 oe	2	B2	B1 for $T =$ linear expression in W
					B1 for $40W + 20$ oe
4 a		632	1	B1	cao
b	5 x 156 or 780			M1	
	"780"–"632"			M1	(dep M1)
		148		A1	cao
5 a		40	2	B1	cao
		80		B1	cao
b		75	1	B1	cao
6 a		Rotation	3	B1	not "turn"
		90°		B1	If 2 transfs given, B0B0B0
		(0,0) or origin		B1	
b		Correct image	2	B2	(B1 for 2 vertices correct)

N	0	Working	Answer	Mark	Notes
7		$\frac{12}{5} \times \frac{15}{2}$		3	M1 Not 2.4 x 1.875
		$\frac{180}{40}$ or simpler inc $\frac{9}{2}$			A1 Not 45
			$4\frac{1}{2}$		A1 cao
8	а		10 & 0.8	2	B2 B1 for 9.8 & 0.8
			or 9.8 & 1		
	1		or 10 & 1	2	
	b	$v^2 = 2gh$		2	IVI I
			v^2		A1
			$\frac{1}{2g}$ de		
9	а		n^4	1	B1 cao
	b		p^7	1	B1 cao
	c		q^4	1	B1 cao
	d		t^3	1	B1 cao
10	а	$\sin \angle PQR = \frac{4.7}{7.6} = 0.6184$		3	M1 for sin & $\frac{4.7}{7.6}$ or 0.6184
					M1 $\sin^{-1}(0.6184)$ May be implied
			38.2		A1 for 38.2 or better
	bi		7.65	2	B1 Accept 7.649
			7.55		B1 cao
11		4x - 12 = 7x - 10		3	B1 for $4x - 12$ seen
		-12 + 10 = 7x - 4x or $-2 = 3x$			M1
			$-\frac{2}{3}$ oe		A1

N	0	Working	Answer	Mark		Notes
12	а	¹² or 1.5 on soon		2	M1	
		8 01 1.5 0e seen				
			7.5 oe		A1	
	b	15×2		2	M1	
		$15 \times \frac{1}{3}$				
			10		A1 cao	
	c	$(3)^2$ 9 225		2	M1	
		$\left(\frac{-}{2}\right)$ or $\frac{-}{4}$ or 2.25 oe				
		(-)	135		A1 cao	
13		a + 5 + 3a - 7 + 2a - 1 = 24		3	M1	
		6a-3=24			M1	
			4.5 oe		A1	
14	а	$\frac{1}{2} \times \frac{1}{2}$ or all 9 combinations shown		2	M1	
		3×3 of an 2 combinations shown				
		eg 2 way table of list	1		A 1	
			9		111	
	bi	$\frac{2}{3}$ on bottom LH branch		9	B1	
		rest of probabilities correct			B1	
		EOE, EOO, OEI	É, OEO, OOE, OOO		B1	
	ii	² × ² × ²			M1	
		$\overline{3}$ \wedge $\overline{3}$ \wedge $\overline{3}$			A 1 0 °C (
			$\frac{8}{27}$ oe		AI III	0 < probs < 1
	iii	$\frac{1}{3} \times \frac{2}{3} \times \frac{2}{3}$ in any order or $\frac{4}{27}$			M1	
		3 correct paths identified			B1 may	be implied by next M1
		" $\frac{4}{27}$ "×3			M1 or ad	ld 3 correct paths
		21	$\frac{4}{9}$ oe		A1 ft if (0 < probs <1

No	D	Working	Answer	Mark		Notes
15		0.88 seen		3	B1	
		726			M1	
		0.88				
			825		A1	cao
16			·	3	B3	B1 for each condition satisfied
			P RQ			
17		10x = 3.222		2	M1	
			$\frac{29}{90}$		A1	cao
18	а		-18,(-2),2,0,-2,2,18	2	B2	for all correct
						(B1 for 4 or 5 correct)
	b		Points plotted	2	B1	$\pm \frac{1}{2}$ sq ft if at least B1 in (a)
			Curve		B1	ft if awarded B1 for points
	c		- 0.7,1,2.7	2	B2	ft if awarded \geq B1 in (b)
						(B1 for 2 correct)
	d	indication that $y = 6$ used		2	M1	eg line, mark on graph
		or $x^3 - 3x^2 + 2 = 6$ or $y = 6$ seen	2.4			G: G f f D f H
			3.4		AI	$\frac{11 \text{ awarded} \ge B1 \text{ in (b)}}{6 - 24}$
19	а	$6p^2 + 15pq - 4pq - 10q^2$		2		for 3 terms correct
			$6p^2 + 11pq - 10q^2$		A1	cao
	b		$8x^6y^{12}$	2	B2	(B1 for 2 of 3 parts correct)
	c		$a^{-8}b^{6}$	2	B2	(B1 for one part correct)
						Accept $\frac{1}{a^8b^{-6}}$
	d		$3p^2$	2	B2	(B1 for one part correct)

N	0	Working	Answer	Mark		Notes
20	а	$\pi \times 3.7^2 + \pi \times 3.7 \times 8.3$		2	M1	
			139 to 140		A1	
	b	$8.3^2 - 3.7^2$ or 55.2		4	M1	
		$\sqrt{55.2}$ or 7.4296			M1	dep on 1 st M1
		$\frac{1}{2}\pi \times 3.7^2 \times 7.43$			M1	
		5	107		A1	for 107 or better (106.512)
21		y = 6 - 2x		7	M1	for making y (or x) the subject
		$x^2 + (6 - 2x)^2 = 20$			M1	for substitution
		$x^2 + 36 - 24x + 4x^2 = 20$			M1	for correct expansion
		$5x^2 - 24x + 16 = 0$			A1	
		(5x-4)(x-4) = 0			M1	
			$x = 4$ and $x = \frac{4}{5}$ oe		A1	cao
			$x = \frac{4}{5}, y = 4\frac{2}{5}$ oe			
			and $x = 4, y = -2$		A1	Must be in pairs
						One pair only, by trial & improvement,
						or without working, M0A0
22	aı		$\mathbf{a} + \frac{1}{2}\mathbf{b}$ oe	3	BI	
	ii		$\frac{1}{2}\mathbf{a} + \mathbf{b}$ oe		B1	
	iii		$\mathbf{b} - \mathbf{a}$ oe		B1	
	b	$\frac{1}{2}\mathbf{a} + \mathbf{b} - \mathbf{a} - \frac{1}{2}\mathbf{b}$		2	B1	
		or $\frac{1}{2}\mathbf{b} - \frac{1}{2}\mathbf{a}$				
			$\overline{X}\overline{Y} = \frac{1}{2}\overline{Q}\overline{S}$		B1	Or equivalent. Must use vector not'n dep on 1st B1

Centre		Surname Initial(s)	
		Signature		
Candidate No.				
	Paper Reference(s) 4400/3H		Examiner's use	e only
	Londor	n Examinations IGCSE	Team Leader's u	use only
	Mathem	atics		
	Paper 3H		Page	Leav
	High	er Tier	4	
	Tuesday ?	November 2004 Morning	5	
		November 2004 – Monning	6	
	Time: 2 ho	urs	7	
	Matariala marina	l four arrows in other and the second s	8	
	Ruler graduated in	centimetres and Nil	9	
	millimetres, protrac pen, HB pencil, era	ser, calculator.	10	
	Tracing paper may	be used.	11	
			12	
Instructions to Ca	indidates		13	
n the boxes above,	write your centre nu	mber and candidate number, your surname, initial(s) and	14	
The paper reference	is shown at the top	of this page. Check that you have the correct question pap	er. 15	
Show all the steps in	any calculations.	provided in this question paper.	16	
nformation for C	andidates		17	
There are 20 pages in The total mark for the	n this question pape is paper is 100. The	r. All blank pages are indicated. e marks for parts of questions are shown in round brackets.	18	
e.g. (2) . You may use a calcu	lator		19	
Advice to Candida	ates		20	
Write your answers	neatly and in good E	English.		
			Total	
his publication may only be reprodu	ced in accordance with ght policy.		L Turn	

This publication may only be reproduced in accordance with London Qualifications Limited copyright policy. ©2004 London Qualifications Limited.

Printer's Log. No. N18957A W850/R4400/57570 3/4/4/3/3/1000

₽

-

ŀ

ŀ

		Leav blan
The scale of the map is 1 cm to 5 km.		
(b) Find the real distance between P and Q .		
	km (2)	
Another town, R , is due East of Q . The bearing of R from P is 135°.		
(c) On the map, mark and label <i>R</i> .		
	(2)	Q1
	(Total 6 marks)	

N18957A

ŀ

ŀ

		Term number	1	2	3		
		Term	2	5	10		
	The rul	e for this sequence is					
		Term	n = (Term	n numbe	$(er)^2 + 1$		
	(a) Wo	ork out the next two terms	s of this s	equence	е.		
	(b) Or	be term of this sequence is	2 101			(2)	
	(b) OI Fii	nd the term number of this	s term.				
						(2)	Q2
						(Total 4 marks)	
3.	(a) Ni Ho Gi	kos drinks $\frac{2}{3}$ of a litre of o ow many litres does Nikos ve your answer as a mixed	orange ju s drink in d number	ice eacl 5 days' :	n day. ?		
	(b) (i)	Find the lowest commo	n multinl	o of 4 o	ndb	(2)	
	(0) (1)	Find the lowest common	n munipi	e 01 4 a	na o.		
	<i></i>	W 1 · · · 2 ³ · 2 ⁵					
	(11)	Work out $3\frac{2}{4} + 2\frac{2}{6}$. Give your answer as a r You must show all your	nixed nur working	nber.			
						(3)	Q3
						(Total 5 marks)	

4.	Toni buys a car for £2500 and sells it for £2775.	bla
	Calculate her percentage profit.	
	07	04
	(Total 3 marks)	
5.	A straight road rises 60 m in a horizontal distance of 260 m.	
	60 m Diagram NOT accurately drawn	
	260 m	
	(a) Work out the gradient of the road.	
	Give your answer as a fraction in its lowest terms.	
	(2)	
	(b) Calculate how far the road rises in a horizontal distance of 195 m.	
		Q5
	(Total 4 marks)	

ŀ

ŀ

7

-

N18957A

┠

•

ļ

ŀ

9

The table at ar	information about the	as of 24 students
he table shows	information about the age	es of 24 students.
Age (years)	Number of students	
16	9	
17	3	
18	8	
19	4	
a) (i) Write d	lown the mode of these ag	jes.
		years
	1. 6.1	
(11) Find th	e median of these ages.	
		vears
(iii) Calcula	ite the mean of these ages.	
		years
		(6)
Another student	, aged 18, joins the group.	
b) (i) Withou decreas	t calculating the new more or stay the same.	ean, state whether the mean will increase or
b) (i) Withou decreas	t calculating the new more or stay the same.	ean, state whether the mean will increase or
b) (i) Withou decreas	t calculating the new more or stay the same.	(i)
b) (i) Withou decreas (ii) Give a	t calculating the new make or stay the same. reason for your answer to	(i).
b) (i) Withou decreas (ii) Give a	t calculating the new make or stay the same. reason for your answer to	(i).
b) (i) Withou decreas (ii) Give a	t calculating the new make or stay the same. reason for your answer to	(i).
b) (i) Withou decreas (ii) Give a 	t calculating the new make or stay the same. reason for your answer to	(i).
b) (i) Withou decreas (ii) Give a 	t calculating the new more or stay the same. reason for your answer to	(i). (2)

ļ

ŀ

10

₽

11

ł

	Planet	Mean distance	
	Mercury	$\frac{1000 \text{ trom the Sun (km)}}{5.8 \times 10^7}$	
	Venus	1.1×10^8	
	Earth	1.5×10^{8}	
	Mars	2.3×10^{8}	
	Jupiter	7.8×10^{8}	
	Saturn	1.4×10^{9}	
	Uranus	2.9×10^{9}	
	Neptune	4.5×10^{9}	
	Pluto	5.9×10^{9}	
(a) Which plane(b) Find the ration Neptune from	t is approximately 4 ti o of the mean distanc n the Sun. Give your	mes as far from the Sun as e of Earth from the Sun t answer in the form 1: <i>n</i>	s Mercury? (1) to the mean distance of
(a) Which plane(b) Find the rational Neptune from	t is approximately 4 ti o of the mean distanc n the Sun. Give your	mes as far from the Sun as e of Earth from the Sun t answer in the form 1: <i>n</i>	(1) to the mean distance of
(a) Which plane(b) Find the rational Neptune from	t is approximately 4 ti o of the mean distanc n the Sun. Give your	mes as far from the Sun as e of Earth from the Sun t answer in the form 1: <i>n</i>	s Mercury? (1) to the mean distance of
 (a) Which plane (b) Find the rational Neptune from 	t is approximately 4 ti o of the mean distanc n the Sun. Give your	mes as far from the Sun as e of Earth from the Sun t answer in the form 1: <i>n</i>	s Mercury? (1) to the mean distance of (2) (Total 3 marks)
 (a) Which plane (b) Find the rational Neptune from 	t is approximately 4 ti o of the mean distanc n the Sun. Give your	mes as far from the Sun as e of Earth from the Sun t answer in the form 1: <i>n</i>	s Mercury? (1) to the mean distance of (2) (Total 3 marks)
 (a) Which plane (b) Find the rational Neptune from 	t is approximately 4 ti o of the mean distanc n the Sun. Give your	mes as far from the Sun as e of Earth from the Sun t answer in the form 1: <i>n</i>	s Mercury? (1) to the mean distance of (2) (Total 3 marks)
 (a) Which plane (b) Find the rational Neptune from 	t is approximately 4 ti o of the mean distanc n the Sun. Give your	mes as far from the Sun as e of Earth from the Sun t answer in the form 1: <i>n</i>	s Mercury? (1) to the mean distance of (2) (Total 3 marks)
 (a) Which plane (b) Find the rational Neptune from 	t is approximately 4 ti o of the mean distanc n the Sun. Give your	mes as far from the Sun as e of Earth from the Sun t answer in the form 1: <i>n</i>	s Mercury? (1) to the mean distance of (2) (Total 3 marks)
 (a) Which plane (b) Find the rational Neptune from 	t is approximately 4 ti o of the mean distanc n the Sun. Give your	mes as far from the Sun as e of Earth from the Sun t answer in the form 1: <i>n</i>	s Mercury? (1) to the mean distance of (2) (Total 3 marks)

Í

N18957A

ŀ

ŀ

12

ŀ

ŀ

13

12. A, B, C and D are points on a circle. Angle $BAC = 40^{\circ}$. Angle $DBC = 55^{\circ}$.		Leav
$\begin{array}{c} A \\ 40^{\circ} \\ B \\ 55^{\circ} \\ C \end{array}$	Diagram NOT accurately drawn	
(a) (i) Find the size of angle <i>DAC</i> .	0	
(ii) Give a reason for your answer.		
	(2)	
(b) (i) Calculate the size of angle <i>DCB</i> .		
(ii) Give reasons for your answer.	o 	
	(3)	
(c) Is <i>BD</i> a diameter of the circle?		
Give a reason for your answer.		
	(1)	Q12
	(lotal 6 marks)	

Ī

į

N18957A

╞

₽

14

ŀ

15

ŧ

ļ

	Leave
we has equation $y = x^2 - 4x + 1$.	
or this curve find	
$\frac{\mathrm{d}y}{\mathrm{d}x}$,	
) the coordinates of the turning point.	
ate with a reason whether the turning point is a maximum or a minimum	
(2)	
nd the equation of the line of symmetry of the curve $y = x^2 - 4x + 1$	
(2)	Q17
(Total 8 marks)	
	1
	e has equation $y=x^2-4x+1$. r this curve find $\frac{dy}{dx^2}$.) the coordinates of the turning point. (4) ate, with a reason, whether the turning point is a maximum or a minimum. (2) nd the equation of the line of symmetry of the curve $y = x^2 - 4x + 1$ (2) (1) (2) (1) (1) (2)

ļ

ŀ

$ \begin{array}{c} h \\ \downarrow \\ $		
The volume of the cone is 12π cm ³ . Find an expression for <i>r</i> in terms of <i>h</i> .		
	r = (Total 3 marks)	Q18
19. Express $\sqrt{98}$ in the form $a\sqrt{b}$ where <i>a</i> and <i>b</i> are integers and	<i>a</i> ≥1.	
		Q19

ŀ

ŀ

	Leave
20. A box contains 7 good apples and 3 bad apples.	
Nick takes two apples at random from the box, without replacement.	
(a) (i) Calculate the probability that both of Nick's apples are bad.	
(ii) Calculate the probability that at least one of Nick's apples is good.	
(4)	
Another box contains 8 good oranges and 4 bad oranges.	
Crystal keeps taking oranges at random from the box one at a time, without replacement, until she gets a good orange.	
(b) Calculate the probability that she takes exactly three oranges.	
(2)	Q20
(Total 6 marks)	
TOTAL FOR PAPER: 100 MARKS	
END	

Ī

į

N18957A

 ╞

₽

20

No	Working	Answer	Mk	Notes
1a		194 ± 2^{0}	2	B2 $(\pm 5^0: B1)$
b	6.2 ± 0.1 or a length x 5	_		M1
		31 ± 0.5 km	2	A1
c		Correct pos'n ± 1 mm	2	B2 (either 135 or 90 ± 2^0 : B1)
2a		17,26	2	B1B1
b	100 or \checkmark seen			M1
		10	2	A1
3a	2/3 x 5 or 10/3			M1 Allow 0.666 x 5
		$3^{1}/_{3}$	2	A1
bi		12	1	B1
bii	9/12 and 10/12 or 19/12			M1 or 18/24 and 20/24, or 38/24
	or 45/12 and 34/12 or 79/12			etc
		$6^{7}/_{12}$	2	A1 or $6^{14}/_{24}$
4	2775 – 2500 OR 2775/2500			M1
	<u>275</u> x 100 111-100			M1
	2500	11%	3	A1
5a	60/260			M1
		3/13	2	A1
b	60 x 195/260 oe or her 3/13 x 195			M1
		45 44.8 to 45.1	2	A1f Follow her grad or %
6a		Correct line	1	B1 thro' \geq 3 pts \pm 2mm
b		x = 3 OR y = 4 drawn		B1
		Correct region clear	4	B3 B1 $x+y \ge 4$
				B1 $x \le 3$ OR $y \le 4$
				B1 if correct region <u>clear</u> .
				ft his (a) and/or his $x = 3 \& y = 4$
				so long as vert & horiz pair
7a		Tangent, radius	1	B1
b	$\sin 40^0 = OT / 6$			M1
	$OT = 6\sin 40^{\circ}$			M1
		3.86 cm	3	A1 or better
c	$\cos 36^\circ = \sin 3.86 / OQ$			M1
	OQ = (his 3.86) / cos 36			M1
		4.77 or 4.8 cm	3	Alf or betters

No	Working	Answer	Mark	Notes
8ai		16	1	B1
aii	Attempt find 12 th or 13 th student's age			M1
		17.5	2	A1
aiii	$\Box fx$ attempted (= 415)			M1
	/ 24			M1dep
		17.3 or better	3	A1 17, no wking, M0M0A0
				17, correct wking, M1M1A1
bi,ii		18 > old mean Increase		B1
			2	B1
9a	v/h attempted			M1
b		2	2	A1
		y = 2x - 1	2	B2 2 <i>x</i> : B1
c				-1: B1; omit " <i>y</i> =": -B1
		$y = 2x + c, c \neq 1$	1	B1 incl $y = 2x$
10a		Mars	1	B1
b	4.5×10^9 / 1.5×10^8 or inverted or 30 or $\frac{1}{30}$ seen			M1
		1:30	2	A1
11ai		$A \cap B'$ shaded	1	B1
aii		Eg 5, 10, 20	1	B1 No ft from diag
bi		Shape, wholly within A		
		& overlapping B	1	B1
bii		Eg 15, 45, 75	1	B1
				SC1: aii 30,15,45 <u>&</u> bii 30,60,90
12ai		55 ⁰		B1
aii	<s in="" same="" seg<="" td=""><td></td><td>2</td><td>B1 or equiv, eg both stand on <i>DC</i></td></s>		2	B1 or equiv, eg both stand on <i>DC</i>
bi		85 ⁰		B1
bii	Opp <s cyc="" of="" quad<="" td=""><td></td><td></td><td>B1 or $BDC = 40$, \leqs in same seg</td></s>			B1 or $BDC = 40$, \leq s in same seg
	180 - (40 + 55)		3	B1
c		No.		
		DCB (or DAC) $\neq 90^{\circ}$	1	B1

No	Working	Answer	Mark	Notes
13a		4/9 or 5/9 seen		B1
		Correct structure		B1 With labels correct or omitted
		4/9 or 5/9 correctly placed once		B1
		All correct		B1
			4	M2 (M1 for one product)
b	4/9 x 5/9 + 5/9 x 4/9	40/81 or 0.49 oe	3	A1f ft his tree if p's <1
14a	$0.006 \ge 3^3$			M1
		0.162	2	A1
b	<u>3240</u> or 20 000 seen			M1
	her 0.162			
	0.2×3^2 or 1.8 seen			M1
	her 20 000 x her 1.8 x 1.2			M1 Dep both M1s scored
		\$43 200	4	Al
15	$-2 \pm \sqrt{4 - (-72)}$ oe			M1
	6			
		1.12, -1.79 or better	3	A1,A1
16a		(2x-1)(x+3)	2	B2 (Signs interchanged, B1)
b	(x+3)(x-3)			M1 (Num.)
	(x-6)(x-3)			M1 (Denom.)
		<u>x+3</u>	3	Al
		<i>x</i> -6		
17ai		2x - 4		B1
aii	his $2x - 4 = 0$			M1
		x = 2		Alf Follow her linear y'
		(2,-3)	4	Alf Follow her x
b		Coeff of x^2 +ve or shape is "U"		
		oe	2	B1 or any correct method
		Min		B1dep B1
c	x = constant	x = 2	2	M1
				A1
18	$\frac{1}{3}\Box r^{2}h = 12\Box$			M1 $\frac{1}{3}\Box r^{2}h = 12$ M0
	$r^2 = \underline{36}$			M1 $r^2 = 36$ M1
	h	$r = \underline{6}$ oe	3	A1 $\Box h$
		$ \sqrt{h}$		

No	Working	Answer	Mark	Notes
19	7^2 or 49 seen			M1
		7\/2	2	A1
20ai	3/10 x 2/9			M1
		1/15 or 0.066(66) oe	2	A1
ii	1 - her 1/15			M1
		14/15 oe	2	Alf
b	4/12 x 3/11 x 8/10			M1
		4/55 or 0.072(72) oe	2	A1

Centre	Surname	Initial(s)		
Candidate No.	Signature			
	Paper Reference(s) $4400/4H$	E	Examiner's us	e only
	London Exam	inations IGCSE $\lfloor \frac{1}{Tex} \rfloor$	am Leader's u	use only
	Mathematics			
	Paper 4H		Page Number	Leave
	Higher Ti	er	3	
	Thursday 4 Novemb	er 2004 – Morning	4	
	Time: 2 hours		6	
	Materials required for examination	Items included with question papers	7	
	millimetres, protractor, compasses, pen, HB pencil, eraser, calculator.	INII	9	
	Tracing paper may be used.		10	
			11	
nstructions to	Candidates	ate number, your surname, initial(s) and	12	
ignature.	nce is shown at the ten of this need. Ch	ack that you have the correct question paper	13	
Answer ALL the	e questions in the spaces provided in this	question paper.	15	
[nformation for	or Candidates		16	
There are 24 pag	es in this question paper. All blank pag	es are indicated.	17	
e.g. (2) .	alculator	of questions are shown in found brackets.	18	
Advice to Can	didates		19	
Write your answ	ers neatly and in good English.		20	
			21	
			22	
			23	
			Total	

This publication may only be reproduced in accordance with London Qualifications Limited copyright policy. ©2004 London Qualifications Limited.

Printer's Log. No. N17226A W850/R4400/57570 4/4/4/4/500

₽

INTERNATIONAL

		Leav
Answer ALL TWENTY THREE questions.		blan
Write your answers in the spaces provided.		
Vou must write down all stages in your working		
fou must write down an stages in your working.		
 The total weight of 3 identical video tapes is 525 g. Work out the total weight of 5 of these video tapes. 		
	g	Q1
	(Total 2 marks)	
2. Solve $5x - 3 = 2x - 1$		
	<i>x</i> =	
	(Total 3 marks)	

N17226A

ŀ

ŀ

3

N17226A

ł

N17226A

4

ŀ

5
5	Colculate the value of $\sqrt{26^3 \cdot 20^2}$		Lea blar
э.	Write down all the figures on your calculator display.		
		(Total 2 marks)	Q5
		(10001 - 1101165)	
6.	(a) Expand $y(y+2)$		
	(b) Expand and simplify $2(2x+1)+2(x-4)$	(1)	
	(b) Expand and simplify $5(2x+1)+2(x-4)$		
			0(
		(2) (Total 3 marks)	

ŀ

7.	Paul got 68 out of 80 in a science test. (a) Work out 68 out of 80 as a percentage. %	Leave blank
	(2)Paul got 72 marks in a maths test.72 is 60% of the total number of marks.(b) Work out the total number of marks.	
	(2) (Total 4 marks)	Q7

ĺ

-

Turn over

N17226A

ŀ

ļ

8	The <i>n</i> th term of a sequence is given by this formula	Lea bla
0.		
	$n \tan t \operatorname{erm} = 20 - 3n$	
	(a) Work out the 8th term of the sequence.	
	(1)	
	(b) Find the value of <i>n</i> for which $20 - 3n = -22$	
	$n - \dots$ (2)	
	Here are the first five terms of a different sequence.	
	8 11 14 17 20	
	(c) Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.	
	nth term =(2)	Q8
	<i>n</i> th term =(2) (Total 5 marks)	Q8
	<i>n</i> th term =(2) (Total 5 marks)	Q8
	<i>n</i> th term =(2) (Total 5 marks)	Q8
	<i>n</i> th term =(2) (Total 5 marks)	Q8
	<i>n</i> th term =(2) (Total 5 marks)	Q8
	<i>n</i> th term =(2) (Total 5 marks)	Q8
	<i>n</i> th term =(2) (Total 5 marks)	Q8
	<i>n</i> th term =(2) (Total 5 marks)	Q8
	<i>n</i> th term =(2) (Total 5 marks)	Q8
	<i>n</i> th term =(2) (Total 5 marks)	Q8

ŀ

4

ŀ

Turn over

Leave blank

Speed (v km/h)	Frequency
$30 < v \le 40$	20
$40 < v \le 50$	76
$50 < v \le 60$	68
$60 < v \le 70$	28
$70 < v \le 80$	8

10. The table gives information about the speeds, in km/h, of 200 cars passing a speed checkpoint.

(a) Write down the modal class.

ŀ

(b) Work out an estimate for the probability that the next car passing the speed checkpoint will have a speed of more than 60 km/h.

(2)

.....

(1)

(c) Complete the cumulative frequency table.

Speed (v km/h)	Cumulative frequency
$30 < v \le 40$	
$30 < v \le 50$	
$30 < v \le 60$	
$30 < v \le 70$	
$30 < v \le 80$	

(1)

ł

ŀ

ŀ

┞

12

ł

ŀ

14. (a) Find the Highest Common Factor of 75 and 105.		Leave blank
(b) Find the Lowest Common Multiple of 75 and 105.	(2)	
(c) This the Dowest Common Manaple of 75 and 165.		
		014
	(Total 4 marks)	
15. Make <i>v</i> the subject of the formula $m(v-u) = I$		
	$v = \dots$	Q15
	(Total 3 marks)	

ŀ

16.	Kate is going to mark some examination papers.	bla
	When she marks for n hours each day, she takes d days to mark the papers.	
	<i>d</i> is inversely proportional to <i>n</i> .	
	When $n = 9, d = 15$	
	(a) Find a formula for d in terms of n .	
	$d = \dots$	
	(b) Kate marks for 7^{\perp} hours each day	
	$(b) \text{Rate marks for } r_2 \text{ hours each day.}$	
	Calculate the number of days she takes to mark the papers.	
	(2)	Q1
	(Total 5 marks)	

Í

Ī

Turn over

N17226A

ŀ

ŀ

ŀ

ŀ

ŀ

ļ

17

Turn over

ŧ

	Leav
(c) Use your graph to find estimates for the solutions of the equation	
$x + \frac{2}{2} = 4$	
x	
$x = \dots$ or $x = \dots$ (2)
The solutions of the equation $2x + \frac{2}{x} = 7$ are the x-coordinates of the points of intersection	on
of the graph of $y = x + \frac{2}{x}$ and a straight line L .	
(d) Find the equation of L .	
(2) Q19
(Total 8 mark	(S)

Í

Ī

Turn over

ļ

..... cm (3)

ŀ

ŀ

ŀ

21

Turn over

22		Leave blank
22.	$\mathbf{f}(x) = x^2$	
	$\mathbf{g}(x) = x - 6$	
Solve the equation $fg(x) = g^{-1}$	(x)	
		Q22
	(Total 5	marks)
	(10141 5	

ł

		Leave blank
23.	There are 10 beads in a box.	
	<i>n</i> of the beads are red.	
	Meg takes one bead at random from the box and does not replace it.	
	She takes a second bead at random from the box.	
	The probability that she takes 2 red beads is $\frac{1}{3}$.	
	Show that $n^2 - n - 30 = 0$	
		Q23
		\square
	(Total 4 marks)	
	TOTAL FOR PAPER: 100 MARKS	
	END	
a		

-j

-Į

N17226A

ļ

23

Page	
<u> </u>	
ω	
q	
ω	
0	

N	0	Working	Answer	Mark		Notes
1		525 ÷ 3 or 175		2	M1	
			875		A1	cao
2		5x - 2x = 3 - 1		3	M1	
		3x = 2			M1	
			$\frac{2}{3}$ oe		A1	Accept 0.66 or 0.67 or better
3		Splits shape appropriately		4	M1	eg rectangle + triangle or rectangle + trapezium
		eg 90×70 (6300) or			M1	dep on 1st M1 for
		150×90 (13 500)				relevant rectangle area
		$eg\left(\frac{110+90}{2}\right) \times 80$ (8000)			M1	dep on 1st M1 for relevant triangle or
		or $\frac{1}{2} \times 80 \times 20$ (800)				trapezium area
			14 300		A1	cao
4	a	1 - (0.2 + 0.1 + 0.4)		2	M1	
			0.3		A1	
	b		170	1	B1	cao
5		2.366		2	M1	
			1.5381		A1	for at least first 4 figures
6	а		$y^2 + 2y$	1	B1	oe inc $y \times y + 2 \times y$
	b	6x + 3 and $2x - 8$		2	M1	
			8x - 5		A1	cao
7	a	$\frac{68}{80}$ or 0.85		2	M1	
			85		A1	cao
	b	72		2	M1	
		$eg \overline{0.6}$				
			120		A1	cao

N	0	Working	Answer	Mark		Notes
8	а		- 4	1	B1	cao
	b	3n = 20 + 22 or $-3n = -22 - 20$		2	M1	
			14		A1	cao
	с		3n+5 oe	2	B2	B1 for 3 <i>n</i> oe seen
9	а	3×4		3	M1	
		$\frac{1}{2}$ or 6				
		 ''6''×7			M1	
			42		A1	
	b	"6"×2		3	M1	
		$3 \times 7 + 4 \times 7 + 5 \times 7$			M1	
		or 21 + 28 + 35				
			96		A1	ft from "6"
10	а		$40 < v \le 50$	1	B1	
	b	36		2	M1	for fraction with a
		$\overline{200}$				denominator of 200
			0.18 oe		A1	for numerator of 36
	с		20, 96, 164 192,	1	B1	
			200			
	d		Points correct	2	B1	
			Curve or lines		B1	ft
	e	50 (or $50\frac{1}{4}$) & 150 (or $150\frac{3}{4}$)		2	M1	
		indicated				
			~ 13		A1	ft from graph if B1 or B2
11	•		27	2	D1	<u>ın (d)</u>
11	1		$\begin{vmatrix} 2 \\ 2^6 \end{vmatrix}$	3	BI	cao
	11 					cao
	111		0		BI	cao

Page 14 of 30

No	No Working		king	Answer	Mark		Notes
12		12x - 10y = 26	18x - 15y = 39		4	M1	for coefficients of <i>x</i> or <i>y</i> the same followed by correct operation. Condone one arithmetical error
		12x - 9y = 24	20x - 15y = 40			A1	cao
		<i>y</i> = -2	2x = 1			M1	(dep on 1st M1) for substituting for other variable
				$\frac{1}{2}, -2$		A1	cao
13	a	$5.6 \times \frac{5}{8}$			2	M1	
	h	2		3.5	2	A1 M1	cao
	U	$4.5 \times \frac{5}{5}$			2	1411	
				2.7		A1	cao
14	a	$75 = 3 \times 5^2$ and 1 or 1, 3, 5, 15, 25, 1, 3, 5, 15, 21, 35	$05 = 3 \times 5 \times 7$ 75 and 5, 105		2	M1	
				15		A1	cao
	b	$3 \times 5^2 \times 7$ or 75, 150, 225, 3 525 and 105, 210, 313	300, 375, 450, 5, 420, 525		2	M1	Must be at least 3 correct in each list of multiples
		, ,	, ,	525		A1	cao
15		mv - mu = I			3	M1	or M2 for $v - u = \frac{I}{m}$
		mv = I + mu				M1	
				$\frac{I+mu}{m}$ or $u+\frac{I}{m}$		A1	

Page 15 of 30

No		Working	Answer	Mark		Notes
16	a	$d = \frac{k}{n}$ or $d \propto \frac{1}{n}$		3	M1	
		$15 = \frac{k}{9}$			M1	
		,	<u>135</u>		A1	
	b	$\frac{135}{7.5}$	n	2	M1	
		1.5	18		A1	cao
17	a		720, 1520	2	B2	B1 for each cao
	b		bar of height 12 little squares	1	B1	
18		$5.3^2 - 3.8^2 = 28.09 - 14.44$		5	M1	for squaring and subtracting
		13.65			A1	C C
		"13.65"+6.2 ² or 52.09			M1	for squaring and adding
		$\sqrt{"13.65"+6.2^2}$			M1	(dep on previous M1) for square root
			7.22		A1	for 7.21 or 7.22 or answers rounding to either of these

N	0	Working	Answer	Mark	Notes
19	а		5.4 3.3 3 4.5	2	B2 for all 4 correct
					(B1 for 2 correct)
	b		Points	2	B1 dep on at least B1 in (a)
					for plotting at least /
					or ft correctly $\pm \frac{1}{2}$ square
					B1 dep on previous B1 for
					joining points with a
					smooth curve
	с		0.59, 3.41	2	B2 B1 for each solution
					Accept 1 or 2 dp
	d	2		2	M1
		x + - = 7 - x			
			y = 7 - x		A1
			or $x + y = 7$		
20	а	60 an 180 an ann		3	B1
		$\frac{1}{360}$ de or $\frac{1}{360}$ de seen			
		$2\pi \times 4$			M1
		2			
			12.6		A1 for 12.6 or better
	h	1		1	(12.5663)
	U	eg $\frac{1}{2} \times 8 \times 8 \times \sin 60^{\circ}$		4	Λ area
		$^{1} \times \pi \times 4^{2}$			M1
		2 ~ ~ ~ ~	25.1 an 27.7		
			25.1 or 27.7		A1 for one correct evaluation to 3sf or better
					27.7 (27.7128)
					or 25.1 (25.1327)
			2.6		A1 for 2.6 or better (2.580)

N	0	Working	Answer	Mark		Notes
21	а	6.5×8.5		2	B2	for 55.25
			55.25			(B1 for 6.5 or 8.5 seen)
	b	7.5		3	B1	for numerator 7.5
		8.5			B1	for denominator 8.5
			0.882		B1	for 0.88 or better
						(0.8823529) Accept
						0.9 if 7.5 and 8.5 seen
22		$(x-6)^2 = x+6$		5	B1	for $(x-6)^2$
		$x^2 - 12x + 36 = x + 6$			B1	for $x + 6$
		$x^2 - 13x + 30 = 0$			M1	for $x^2 - 13x + 30 = 0$
		(x-10)(x-3) = 0			M1	for $(x-10)(x-3) = 0$
			x = 10 or x = 3		A1	cao
23		$\frac{n}{10} \times \frac{n-1}{9} = \frac{1}{3}$		4	B1	for $\frac{n}{10}$ and $\frac{n-1}{9}$ seen
					M1	for $\frac{n}{10} \times \frac{n-1}{9} = \frac{1}{3}$
		3n(n-1) = 90 or $n(n-1) = 30$			M1	
		$3n^2-3n^2$	$n = 90 \text{ or } n^2 - n = 30$		A1	

Centre No.			Surname	Initial(s)
Candidate No.			Signature	

	Paper Reference(s)		Examiner's us	e only
	4400/3H			
	London Exami	nations IGCSE	Team Leader's u	ise only
	Mathematics			
	Paper 3H		Page Numbers	Leave Blank
	Higher Tie	r	3	
			4	
	Thursday 12 May 200	5 – Morning	5	
	Time: 2 hours		6	
			7	
	Materials required for examination	Items included with question papers	8	
	millimetres, protractor, compasses,	NII	9	
	Tracing paper may be used.		10	
			11	
Instructions to C	andidates		12	
In the boxes above,	write your centre number, candidate nur	nber, your surname, initial(s) and	13	
			14	

The paper reference is shown at the top of this page. Check that you have the correct question paper. Answer ALL the questions in the spaces provided in this question paper. Show all the steps in any calculations.

Information for Candidates

There are 20 pages in this question paper. All blank pages are indicated. The total mark for this paper is 100. The marks for parts of questions are shown in round brackets: e.g. (2).

You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2005 Edexcel Limited.

Turn over

		Leav
Answer ALL TWENTY TWO questions.		
Write your answers in the spaces provided.		
You must write down all stages in your working.		
1. Use your calculator to work out the value of $\frac{9.5 - 3.7}{1.3 \times 2.4}$		
Write down all the figures on your calculator display.		
		Q1
	(Total 2 marks)	
2. Solve $5(2x+3) = 30$		
	<i>x</i> =	Q2
	(Total 3 marks)	
		2
	Т	י זורח מז

-

-

5.	The probability that a person chosen at random has brown eyes is 0.45 The probability that a person chosen at random has green eyes is 0.12	blar
	(a) Work out the probability that a person chosen at random has either brown eyes or green eyes.	
	(2)	
	250 people are to be chosen at random.	
	(b) Work out an estimate for the number of people who will have green eyes.	
	(2)	Q5
	(Total 4 marks)	
6.	(a) Factorise $9p + 15$	
	(1)	
	(b) Factorise $q^2 - 4q$	
	(1)	
	(c) Factorise $x^2 - 3x - 10$	
	(2)	Q6
	(Total 4 marks)	
		5

_

-

-

8.	In a sale at <i>Bargain Buys</i> , all the normal prices are reduced by 15%.	bla
	The normal price of a printer is £240	
	(a) Work out the sale price of the printer.	
	f	
	(3)	
	In the same sale, the sale price of a laptop computer is £663	
	(b) Work out the normal price of the laptop computer.	
	£	
	(3)	Q8
	(Total 6 marks)	
9.	(a) Solve the inequality $2x - 3 < 5$	
	(2)	
	(b) n is a positive integer.	
	Write down all the values of <i>n</i> which satisfy the inequality $2n - 3 < 5$	
	(2)	Q9
	(Total 4 marks)	
		7

-

-

The table gives infor	mation about the age	s, in years, of the 80	members of a sports club.
	Age (t years)	Frequency	
	$10 < t \leq 20$	8	
	$20 < t \leq 30$	38	
	$30 < t \leqslant 40$	28	
	$40 < t \leqslant 50$	4	
	$50 < t \le 60$	2	
			years
(b) Complete the cu	mulative frequency ta	able.	years (4)
(b) Complete the cu	mulative frequency ta	able. Cumulative frequency	years (4)
(b) Complete the cu	mulative frequency tandard Age (<i>t</i> years) $10 < t \le 20$	able. Cumulative frequency	years (4)
(b) Complete the cu	mulative frequency ta	able. Cumulative frequency	years (4)
(b) Complete the cu	$\frac{Age}{(t \text{ years})}$ $10 < t \le 20$ $10 < t \le 30$ $10 < t \le 40$	able. Cumulative frequency	years (4)

(1)

-

 $10 < t \le 60$

8

10			Leave
12.	A scale model is made of the hall. The height of the scale model of the hall is 30 cm.		
	(a) Express the scale of the model in the form 1: <i>n</i>		
		(3)	
	The length of the scale model of the hall is 95 cm.		
	(b) Work out the real length of the hall. Give your answer in metres		
	Give your unswer in metres.		
		m	
		(3)	Q12
		(Total 6 marks)	
13.	The size of each exterior angle of a regular polygon is 18°.		
	(a) Work out how many sides the polygon has.		
		(2)	
	(b) Work out the sum of the interior angles of the polygon.		
		0	
		(2)	Q13
		(Total 4 marks)	

Turn over

ŀ

The diagram shows six counters.	Le bla
$(\mathbf{B}) (\mathbf{A}) (\mathbf{N}) (\mathbf{A}) (\mathbf{N}) (\mathbf{A})$	
Each counter has a letter on it.	
Bishen puts the six counters into a bag.He takes a counter at random from the bag.He records the letter which is on the counter and replaces the counter in the bag.He then takes a second counter at random and records the letter which is on the counter.	
(a) Calculate the probability that the first letter will be A and the second letter will be N.	
(2)	
(b) Calculate the probability that both letters will be the same.	
(4)	01
(Total 6 marks)	

. . .

-

-

 (b) By drawing a suitable straight line on the grid, find estimates of the solutions of the equation x³ - 6x - 2 = 0. Give your answers correct to 1 decimal place. 	Leave
	Q20
	17

. -

-

-

Q	Working	Answer	Mark		Notes	Paper
1.	5.8	·	2	M1	For 5.8 or 3.12 seen	3H
	3.12	1.8589		A1	For first 5 figures	
					Total 2 marks	
2.	10x + 15 = 30 or $2x + 3 = 610x = 30 - 15$ or $2x = 6 - 3$	1. 11/2	3	M1 M1 A1	For $10x + 15$ or $2x + 3 = 6$ For isolating x term in $ax + b = c$ For $1\frac{1}{2}$ oe inc $\frac{3}{2}$	
					Total 3 marks	
3.	$\frac{15}{18} - \frac{8}{18}$	7	2	M1	For clear attempt to express with common denominator - at least one correct	
		18		A1	cao	
					Total 2 marks	
4.		correct enlargement	3	B3	B2: for translation of correct shape or 2 vertices correct B1: for one side correct length or for enlargement scale factor 2, centre (2,1)	
					Total 3 marks	

Page 1 of 27

Edexcel International, Mark Scheme with Examiners' Report June 2005 IGCSE Mathematics, Papers 3H and 4H 4400 MATHEMATICS 4400, MARK SCHEME

5.	(a) 0.4	5 + 0.12		2	M1	For 0.45 + 0.12 or 1 - (0.45 + 0.12) or
			0.57		A1	1 - 0.45 - 0.12 or 0.43 For 0.57 oe as final answer
	(b) 250	0 x 0.12 or 250 x 0.1	30	2	M1	For 250 x 0.12 or 250 x 0.1
			50		AI	CdU
						Total 4 marks
6.	(a)		3 (3 <i>p</i> + 5)	1	B1	cao
	(b)		q (q - 4)	1	B1	cao
	(C)		(x + 2) (x - 5)	2	B2	(B1 for one correct factor or signs reversed)
						Total 4 marks
7.	(a) (<u>9</u>	$\left(\frac{+5}{2}\right) \times 6$		2	M1	
	(2)	42		A1	cao
	(b) "4	2" x 15		2	M1	
			630		A1	ft from (a)
						Total 4 marks

Edexcel International, Mark Scheme with Examiners' Report June 2005 IGCSE Mathematics, Papers 3H and 4H 4400

.

Page 2 of 27

			aler -			
8.	(a)	eg		3	M1	Or M2 for $\frac{100-15}{100} \times 240$
		240 - "36"			M1	dep on first M1
			204		A1	cao
	(b)	0.85 oe seen		3	B1	
		<u>663</u> 0.85			M1	For $\frac{663}{0.85}$ or $\frac{663}{1-0.15}$
			780		A1	cao
						Total 6 marks
9.	(a)	2x < 8		2	M1	
			x < 4		A1	For x < 4 as final answer
	(b)		1, 2, 3	2	B2	(B1 for two correct and none wrong or three correct and one wrong)
						Total 4 marks
10.	(a)	15 x 8 + 25 x 38 + 35 x 28 + 45 x 4 + 55 x 2		4	M1	For products m x f where m is consistent inc end points
		=120 + 950 + 980 + 180 + 110 = 2340			M1	(dep)for use of midpoints (15,25 or 15.5,25.5,)
		2340 ÷ 80			M1	(dep on 1^{st} M1) for adding and \div 80
			29.25		A1	Accept 29, 29.2, 29.3 if first two M1s scored (If 15.5,25.5 used,
						mean = $\frac{2380}{80}$ = 29.75)

÷

Page 3 of 27

	(b)		8, 46, 74, 78, 80	1	B1	cao
	(c)		Points correct Curve or line segments	2	B1 B1	±1/2 sq ft from sensible table ft from points if 4 or 5 points correct or if points are plotted consistently within each interval at the correct heights
	(d)	use of 40 (or 40.5) on graph or 40 th (or 40.5 th) stated		2	M1	For use of 40 (or 40.5) on graph or 40 th (or 40.5 th) stated
			~29		A1	If M1 scored, ft from cumulative frequency graph If no working, follow through only from correct curve
						Total 9 marks
11.		$h^2 = \frac{W}{L}$		2	M1	
		1	lh ²		A1	
						Total 2 marks
12.	(a)	30 : 1200 or 1200 : 30 oe		3	M2	For 30 : 1200 or 1200 : 30 oe [M1 for 12(00) : 30(00) or 30(00) : 12(00) oo]
			1:40		A1	Accept 1 : 0.025, 1 : $1/_{40}$ oe, $n = 40$ ft if M1 scored SC B2 for 1 : 2.5, 1 : 4, 1 : 0.4, 1 : 400, 1 : 25, 1 : 250

Page 4 of 27

	(b)	95 x "40" or 3800 "3800" ÷ 100	38	3	M1 M1 A1	ft from their n	
	OR	95		3	M1	(dep)	
		30 x 12	38		M1 A1		
							Total 6 marks
13.	(a)	<u>360</u> 18		2	M1		
			20		A1	cao	
	(b)	"20" x (180 - 18) or ("20" - 2) x 180		2	M1		
		01 (20 - 2) × 100	3240		A1	ft from (a)	

distant.

Total 4 marks

Edexcel International, Mark Scheme with Examiners' Report June 2005 IGCSE Mathematics, Papers 3H and 4H 4400

Page 5 of 27

14.	2 (x - 1) + 2x + 3 = 4 or $\frac{2(x - 1) + 2x + 3}{4} = 1$ or $\frac{2(x - 1)}{4} + \frac{2x + 3}{4} = 1$		4	M1	Clear attempt to multiply both sides by 4 (or multiple) or expressing LHS with a denominator of 4 or a multiple of 4
	$4 4 4 4 2x - 2 + 2x + 3 = 4 or \frac{2x - 2 + 2x + 3}{4} = 1 or \frac{2x - 2}{4} + \frac{2x + 3}{4} = 1$			M1	(dep) expanding brackets or M2 for $\frac{x}{2} - \frac{1}{2} + \frac{2x}{4} + \frac{3}{4} = 1$ (M1 if one error)
	4 <i>x</i> = 3	· · ·		M1	(dep on first M1) reducing to form ax = b using a correct method or $\frac{x}{2} + \frac{2x}{4} = 1 + \frac{1}{2} - \frac{3}{4}$
		3⁄4		A1	oe
					Total 4 marks
15.	(a) $\frac{10}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$		2	M1	Accept 10 = $k5 \text{ or } \sqrt{20}$
		2 √5		A1	Accept $k = 2$
	(b) $25 + (5\sqrt{3}) + (5\sqrt{3}) + (\sqrt{3})^2$	28 + 10 √3	2	M1 A1	Accept <i>a</i> = 28, <i>b</i> = 10

Total 4 marks

Page 6 of 27

16.	(a)	Angle of elevation identified 50 tan 19°	17.2	3	B1 M1 A1	On diagram or implied by working 17.2 or better (17.2163)
	(b)	50 ² + 27 ² or 56.8(2) or 50 ² + "17.2 " ² or value rounding to 52.88		3	M1	
		$\sqrt{56.8^{+}+17.2^{+}}$			M1	
			59.3 - 59.4		A1	For 59.3 - 59.4
			Э			Total 6 marks
17.	(a)	(x + 4)(x + 1) - 15 = 35		3	M1	For $(x + 4)(x + 1) - 15 = 35$
		x^2 + 5x + 4 - 15 = 35	x^2 + 5x - 11 = 35		B1 A1	or $(x + 1)(x + 4) = 50$ For $x^2 + 5x + 4$ or $x^2 + x + 4x + 4$ For $x^2 + 5x + 4 - 15 = 35$ or $x^2 + 5x + 4 = 50$ or simpler
	OR	(x + 1)(x - 1) + 5(x - 2) = 35 $x^{2} + x - x - 1 + 5x - 10$		3	M1	For $(x + 1)(x - 1) + 5(x - 2) = 35$
			x ² + 5x - 11 = 35		B1 A1	For x ² + x - x - 1 + 5x - 10 or simpler For x ² + 5x - 1 - 10 = 35
	(b)	$\frac{-5\pm\sqrt{5^2-4\times-46}}{2}$	1	3	M1	
		$\frac{-5\pm\sqrt{209}}{2}$	4.73		M1 A1	May be implied by an answer of 4.75 For 4.73 or better (4.7284) Accept 4.73 and -9.73 or better

Total 6 marks

Page 7 of 27

18.	(a)	$\frac{9.4}{\sin 123^\circ} = \frac{AC}{\sin 35^\circ}$		3	M1	
		$AC = \frac{9.4 \sin 35^\circ}{\sin 123^\circ}$			M1	
			6.43		A1	For 6.43 or better (6.4287)
	(b)	1/2 x 9.4 x "6.43" x sin x° or 1/2 x AB x "6.43" x sin 123° or 1/2 x AB x 9.4 x sin 35°		3	M1 B1	For clear attempt to use " $\frac{1}{2}absinC$ " For x = 22 or AB = 4.2 or better (4.1987) appropriate for their form of $\frac{1}{2}absinC$ If M0, award for x = 22 or AB = 4.2 or
			11.3		A1	better (may be shown on diagram) 11.3 or better (11.3188); ft from (a)
						Total 6 marks
19.	(a)	$\frac{3}{6} \times \frac{2}{6}$		2	M1	
			<u>6</u> 36		A1	
	(b)	$\frac{1}{6} \times \frac{1}{6} + \frac{3}{6} \times \frac{3}{6} + \frac{2}{6} \times \frac{2}{6}$ $= \frac{1}{36} + \frac{9}{36} + \frac{4}{36}$		4	M1 M1 M1	1 correct product All 3 correct products Summing at least 2 correct products
			<u>14</u> 36		A1	

Page 8 of 27

OR	BB BA BN BA BN BA AB AA AN AA AN AA NB NA NN NA NN NA AB AA AN AA AN AA NB NA NN NA NN NA AB AA AN AA AN AA	:	4	M3	List of all 36 combinations M2 for 1 omission M1 for 15 or more combinations
		<u>14</u> 36		A1	
					Total 6 marks
(a)		16	1	B1	cao
(b)	x ³ - 7 x + 9 = 11 - x or - x + 11 oe seen		3	M1	May be implied by line x + y = 11
	line $x + y = 11$ drawn	~ -2.3, - 0.3, 2.6		M1 A1	Accept coordinates ft from candidate's line if first M1 scored, line has negative gradient and there are 3 points of intersection
					Total 4 marks
(a)	$\frac{2512}{157}$ or 16 or $\frac{157}{2512}$ or 0.0625		3	M1	
	$\sqrt{16}$ or 4 or $\frac{1}{4}$			M1	For $\sqrt{16}$ or 4 or $26^2 \times \frac{157}{2512}$ (42.25)
		6.5		A1	Cao

ì

Page 9 of 27

20.

21.

$$\frac{2}{x-1} + \frac{x-11}{(x-1)(x+4)}$$

$$\frac{2(x+4) + (x-11)}{(x-1)(x+4)}$$
or
$$\frac{2(x+4)}{(x-1)(x+4)} + \frac{x-11}{(x-1)(x+4)}$$

$$\frac{2x+8+x-11}{(x-1)(x+4)}$$

$$\frac{3x-3}{(x-1)(x+4)}$$

 $\frac{3}{(x+4)}$

8320

M1 A1

B1

2

6

Total 5 marks

B1 For factorising $x^2 + 3x - 4$

cao

- B1 For correct single fraction even if unsimplified, or for correct sum of two fractions with the same denominator ft from incorrect factorisation
- B1 For expanding brackets correctly in numerator
- B1 For simplifying their numerator
- B1 For factorising a correct numerator
 - cao SC If no denominator, award 3rd B1 for 2x+8+x-11 or $2x^2+6x-8+x^2-11x-x+11$ and 4th B1 for 3x-3 or $3x^2-6x+3$

Total 6 marks

TOTAL FOR PAPER: 100 MARKS

Centre No.	Surname Initial(s	s)
Candidate No.	Signature	
	Paper Reference(s) 4400/4H	Examiner's use only
	London Examinations IGCSE	Team Leader's use only
	Mathematics	
	Paper 4H	Page Leave Numbers Blank
	Higher Tier	3
	Friday 13 May 2005 – Morning	4
	Time: 2 hours	5
	Time. 2 nouis	6
	Materials required for examination Items included with question papers	7
	Ruler graduated in centimetres and Nil millimetres, pen, HB pencil, eraser,	8
	calculator. Tracing paper may be used.	9
		10
		12
nstructions to C n the boxes above,	write your centre number, candidate number, your surname, initial(s) and	- 13
ignature. The paper reference	e is shown at the top of this page. Check that you have the correct question pan	per. 14
1 1	uestions in the spaces provided in this question paper.	15
Answer ALL the q Show all the steps i		<u>⊢</u>
Answer ALL the q Show all the steps in the step of the step o	Candidates	16
Answer ALL the q Show all the steps in Information for the formation of the formation o	Candidates in this question paper. All blank pages are indicated. this paper is 100. The marks for parts of questions are shown in round brackets	<u> </u>

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2005 Edexcel Limited.

-

Total

Turn over

		Answer ALL NINETE	EN questions.		bla
		Write your answers in the	e spaces provided.		
		You must write down all stag	ges in your working.		
1. 5	Solve the equ	ation			
		3p+5=7p	+ 3		
				<i>p</i> = (Total 3 marks)	Q1
(Tax is added Complete Kri	at 5% of the total amount.			
		182 units at £0.0821 per unit	£		
		182 units at £0.0821 per unit units at £0.0704 per unit	£		
		182 units at £0.0821 per unit units at £0.0704 per unit Total amount	£ £		
		182 units at £0.0821 per unit units at £0.0704 per unit Total amount Tax at 5% of the total amount	£ £ £ £		
		 182 units at £0.0821 per unit units at £0.0704 per unit Total amount Tax at 5% of the total amount Amount to pay 	£ £ £ £ £		
		182 units at £0.0821 per unit units at £0.0704 per unit Total amount Tax at 5% of the total amount Amount to pay	£ £ £ £ £	(Total 7 marks)	Q2

-

-1

ŀ

ŀ

J .	A member is chosen at random.	
	Stavros says "The probability that this member is left-handed or wears glasses is $\frac{3}{4}$ "	
	Is he correct?	
	Explain your answer.	
		Q6
	(Total 2 marks)	
7.	The diagram shows a triangle <i>LMN</i> . MN = 15 cm. $LN = 8 cm$. Angle $LNM = 90^{\circ}$. Diagram NOT accurately drawn (a) Calculate the length of <i>ML</i> .	
	(3)	
	(b) Write down the value of $\tan x^{\circ}$.	
		07
	(Total 4 marks)	

-

-

Q	(a) T	The universal set $\mathscr{C} = \{Angela's furniture\}$	bla
ð.	(a) 1 A	The universal set, $c = {\text{Angela s furniture}}.$ $L = {\text{Chairs}}.$	
	Ь	<i>R</i> = {Kitchen furniture}.	
	Γ	Describe fully the set $A \cap B$.	
	<i>a</i> . –	(2)	
	(b) <i>F</i>	$P = \{2, 4, 6, 8\}.$ $P = \{\text{Odd numbers less than 10}\}$	
	(1	i) List the members of the set $P \cup Q$.	
	G	ii) Is it true that $P \cap Q = \emptyset$?	
	(,	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
		Explain your answer.	
		(3)	Q8
		(Total 5 marks)	
9.	The f	ormula for the curved surface area, A, of a cylinder is	
		$A = 2\pi rh$	
	where	e r is the radius and h is the height.	
	Calcu	late the value of <i>r</i> when $A = 19.8$ and $h = 2.1$	
	Give	your answer correct to one decimal place.	
		$A = \dots$	Q9

		Annual world	7
	Food	production, in tonnes	
	Cocoa	1.75×10^{6}	
	Coffee	1.85×10^{6}	-
	Sugar	9.72×10^{7}	
	Wheat	4.98×10^{8}	
Calculate the total	annual worl	d production of coffee an	d sugar.
			tonnes (2)
Brazil produces 9. Calculate the annu	7% of the w al productio	orld's sugar. n of sugar from Brazil.	
			tonnes (2)
Express the world four foods.	production	of wheat as a percentage	of the total production of all
			% (3)
			$(' \cdot a + a + 7 + a + a + a + a + a + a + a +$

9

1

-

ŀ

13. f and g are functions.	Leave blank
$f: x \mapsto 2x - 3$	
$g: x \mapsto 1 + \sqrt{x}$	
(a) Calculate f (-4)	
(1) Circuit that $f(x) = 5$ for $\frac{1}{2}$ the scalar of	(2)
(b) Given that $f(a) = 5$, find the value of a .	
$a = \dots$	
	(2)
(c) Calculate gf (6)	
	(2)
(d) which values of x cannot be included in the domain of g?	
	(1)
(e) Find the inverse function g^{-1} in the form $g^{-1}: x \mapsto \ldots$	
	(3) Q13
(Total 10) marks)
N 2 2 1 2 5 A 0 1 2 2 0	

_ _

ŀ

Leave blank 17. In an experiment, 52 plants were grown and their heights were measured. The results are summarised in the table. Height $0 \leq h < 10$ $10 \leq h < 15$ $15 \leq h \leq 20$ $20 \leqslant h < 40$ Number of 10 20 14 8 plants (a) Complete the histogram for these results. Frequency density 20 Ò 10 30 40 Height (cm) (4) The plants with heights from 17.5 cm to 25 cm are chosen for a display. (b) Calculate an estimate of the number of plants chosen for the display. Q17 (2) (Total 6 marks)

19. Convert 0.5	İ to a fraction.				bla
					Q1
				(Total 2 marks)	
			TOTAL FOR H	PAPER: 100 MARKS	
		END			
18					

Q		Working		Answer	Mark		Notes
1.		Correctly collect <i>p</i> term Correctly collect constant	s in eqn nts in eqn	½ oe	3	M1 M1 A1	eg 4p + 3 = 5 (not 7p - 3p + 3=5)
				ġ			Total 3 marks
2.		14.9422 611-182 = 429 "429" × 0.0704 "14.9422" + "30.2016" "45.1438" × 5/100 "45.1438" + "2.25719"	or 30.2016 or 45.1438 or 2.25719	47.40(099)	7	B1 B1 M1 M1 M1 A1	Allow working to 3 s.f. or better throughout M marks can be implied 45.14 x 1.05 or 47.50 or 2.25 Can be awarded in previous line At least 2 d.p.
							Total 7 marks
3.	(a)			50°	3	B3	If B3 not gained: $PQS = 70^{\circ}$ / $\angle PTR=60^{\circ}$ / ext $\angle PTR=120^{\circ}$: B2 If B2 not gained: $\angle PST = 60^{\circ}$: B1
	(b)			\angle s on a straight line = 180° or \angle sum of triangle = 180° or ext \angle of \triangle = sum of int opp \angle s AND	2	B1	
				Corresponding \angle s or alternate \angle s or allied or supp or included or interior or co-interior \angle s		B1	
							Total 5 marks

.

.

Page 11 of 27

4.	(a)	(i) (ii) (iii)	p ⁴ -3a + 4b - 7 q ⁶	1 2 1	B1 B2 B1	B1: 2 terms. subs include working: -B1
	(b)		$2x^{2} + 3x$	2	B2	B1 each term. subs include working: -B1
	(c)	y ² + 2y - y - 2	y ² + y - 2	2	M1 A1	3 terms correct or 4 terms correct ignoring sign Incorrect subsequent work: -A1
						Total 8 marks
5.	(a)		10-19	1	B1	
	(b)		42/59 or 0.71() or 71()%	2	B2	B1 num, B1 denom 42:59 B1
	(c)	8x4.5 + 20x14.5 + 14x24.5 + 5x34.5 + 12x44.5 Midpoints 4.5 (or 5 or 4) etc	1375(.5) or 1376	3	M1 M1 A1	 ≥ four fx attempted, consistent x within interval dep (for midpoints 4 or 5 etc) ISW eg ÷ 59 23.3, 1405, 1346 (no working): SC B2 22.8, 23.8 : SC B1
6.			No or not necessarily Some are (or may be) both	2	B1 B1	Total 6 marks dep on 2 nd B1
						Total 2 marks

Page 12 of 27

7.	(a)	8 ² + 15 ² or 289 seen J	17cm	3	M1 M1 A1	tanx = 15/8 dep on x used dep 8/cosx Answer rounds to 17.0
	(b)		15/8 or 1.875 or 1.88 seen	1	B1	ISW
						Total 4 marks
8.	(a)		Kitchen chairs	2	B1	Or equivalent. Must be clear that overlap is intended eg "chairs that are part of / common to kitchen furniture" "furniture that is both a chair and in the kitchen"
			belonging to Angela or "her"		B1	
	(b)	(i)	1, 2, 3, 4, 5, 6, 7, 8, 9	2	B2	-B1 each omission or extra Any order, in a single list Ignore pegative odd numbers
		(ii)	Yes - no common members	1	B1	Or eg "No odd numbers in P." "P is even numbers, or Q is odd numbers." Must refer to sets or odd or even
						Total 5 marks
9.		19.8 = $2\pi \times r \times 2.1$ or 19.8 / ($2\pi \times 2.1$)	1.5 or better	2	M1A1	Or 19.8 = 2π x 1.5 x 2.1
		OR 2π x 19.8 x 2.1	261(.3)		M1A1	Total 2 marks

Page 13 of 27
10.	(a)			9.905x10 ⁷ or 99 050 000 or 9.91x10 ⁷ or 99 100 000	2	B2	B1 for digits 9905 o	or 991
	(b)	9.7/10	0 x 9.72x10 ⁷	9.43x10 ⁶ or 9 430 000 or better	2	M1 A1		
	(c)	Total = (4.98x1	= 5.988x10 ⁸ or 598800000 10 ⁸ / her 5.988x10 ⁸) x 100	83% or better	3	B1 M1 A1	Or 599000000 dep total clearly a	ttempted
								Total 7 marks
11.	(a)	3 x (i)	or otherwise equalize		3	M1	Whole equations	correct
		coerrs		1⁄2 , 1		A1A1	1 & 1: 3 or 0	
	(b)			Her (½, 1)	1	B1f		
								Total 4 marks
12.	(a)			49	1	B1		
	(b)	(i)	2.5 x 3/2 oe	·	2	M1		
		(ii)	1.5 x 2/3 oe	3./5	2	A1 M1	cao Or 1.5 - 0.5	
				1	_	A1	cao	
								Total 5 marks

Page 14 of 27

Edexcel International, Mark Scheme with Examiners' Report June 2005 IGCSE Mathematics, Papers 3H and 4H 4400

13.	(a)	2(-4) - 3	-11	2	M1 A1	
	(b)	2a - 3 = 5 or $(5 + 3)/2$	4	2	M1 A1	
	(C)	√(2 x 6 - 3) + 1	4	2	M1 A1	
	(d)		Negative or x < 0	1	B1	
	(e)	$y = 1 + \int x$ $x = (y - 1)^2$ $\int x + 1$ becomes -1, () ²	$g^{-1}: x \to (x - 1)^2$ or $y = (x - 1)^2$	3	M1 M1 A1	Or $x = 1 + \int y$ Or $g^{-1}(x) = (x - 1)^2$ or $(x - 1)^2$
		Ι				Total 10 marks
14.	(a)		x(28 - 2x) seen	1	B1	Brackets essential
	(b)	(i)	28 - 4x	2	B1B1	lgnore "y ="
		(ii) "28 - $4x$ " = 0	<i>x</i> = 7	2	M1 A1	
		(iii)	negative coeff. of x^2 or \cap shape	1	B1	Not "the value is negative."
			or $\frac{d^2 y}{dx^2}$ = -4, which is negative			ft her 28 - 4x
	(C)	28 x 7 - 2 x 7 ²	98	2	M1 A1	ft his (ii) if working seen cao

Total 8 marks

Edexcel International, Mark Scheme with Examiners' Report June 2005 IGCSE Mathematics, Papers 3H and 4H 4400

Page 15 of 27

15.	(a)	$\pi \times 12^2 \times 110/360$			2	M1	Or $\pi \times 12^2 \times 0.31$,
			138(.2)			A1	OF $h \ge 12 + 3.3$ or better
	(b)	1/ ₃ x 2πr or ¹²⁰ / ₃₆₀ x 2πr seen + 2r seen	<u>2πr</u> + 2r or	$^{2}/_{3}\pi r + 2r$	3	M1 M1 A1	Or equivalent explanation
			•				Total 5 marks
16.	(a)	(i) (ii) (iii)	-a + b 2a -2a + 2b	oe oe oe	1 1 1	B1 B1 B1	<pre>} Simplification not required } Allow plain a, b }</pre>
	(b)		Parallel <i>QR</i> = 2 <i>MN</i> or lines in ra	itio 1:2 or 2:1	2	B1 B1	(b) marks dep (a)(i)&(iii) correct Without vector symbols unless "length" stated.
							Total 5 marks
17.	(a)	One block of correct height, or $^{20}/_5$ or $^{14}/_5$ or $^{8}/_{20}$ seen			4	M1	8cm, 5.6cm or 0.8cm, any width
			Correct bloc	ks, height & width		A1A1A	.1
	(b)	½ x 14 or ¼ x 8 or 2.5x 2.8 or 5 x 0.4			2	M1	Value "7" or "2" not enough
			9			A1	Total 6 marks

Page 16 of 27

18.	(a)	² / ₅ and ³ / ₅ correctly placed ¾ and ¼ correctly placed Correct structure includes labels	3	B1 B1 B1	Allow even if extra branches
	(b) $\frac{3}{5} \times \frac{3}{4}$ or $\frac{9}{20}$		3	M1	
	$+ \frac{2}{5}$	$\frac{17}{20}$ or 0.85 oe		M1 A1	dep
					Total 6 marks
19.	5.1-0.51 or 51.1-5.1 or 51.1-0.51		2	M1	Or 1/90 seen
		23/45 or 46/90 or 460/900 oe		A1	
					Total 2 marks
					TOTAL FOR PAPER: 100 MARKS

Page 17 of 27

Centre No.				Surname	Initial(s)
Candidate	e No.			Signature	

Paper Reference(s)	Examiner's use	e only
London Examinations IGCSE	Team Leader's u	ise only
Mathematics	[]	
Paper 3H	Page Number	Leave Blank
Higher Tier	3	
Friday 4 November 2005 – Morning	5	
Time: 2 hours	6	
	7	
Materials required for examination Items included with question papers	8	
Ruler graduated in centimetres and Nil millimetres, protractor, compasses,	9	
pen, HB pencil, eraser, calculator. Tracing paper may be used.	10	
	11	
Instructions to Candidates	12	
In the boxes above, write your centre number and candidate number, your surname, initial(s) and	- 13	
The paper reference is shown at the top of this page. Check that you have the correct question pape	er. 14	
Answer ALL the questions in the spaces provided in this question paper. Show all the steps in any calculations.	15	
Information for Candidates	16	
There are 24 pages in this question paper. All blank pages are indicated. The total mark for this paper is 100. The marks for parts of questions are shown in round brackets:	17	
e.g. (2). You may use a calculator.	18	
Advice to Candidates	19	
Write your answers neatly and in good English.	20	
	21	
	22	
	23	

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2005 Edexcel Limited.

Total

Turn over

Answer ALL TWENTY ONE questions.	Leave blank
Write your answers in the spaces provided.	
You must write down all stages in your working.	
1. (a) Use your calculator to work out the value of	
$2.6 - \frac{9.8}{2.7 + 1.2}$	
Write down all the figures on your calculator display.	
(2)	
(b) Give your answer to part (a) correct to 2 significant figures.	
(1) (Total 3 marks)	Q1
(1) (Total 3 marks)	Q1

		Leave blank
3.	The lengths of two of the sides of a kite are 7.6 cm and 4.3 cm.	
	The length of the shorter diagonal of the kite is 5.2 cm.	
	In the space below, use ruler and compasses to construct an accurate, full-size drawing	
	of the kite. You must show all construction lines.	
		Q3
	(Total 4 marks)	
		_

Leave blank The table shows information about the number of bananas the students in class 1B ate in 4. one week. Number of bananas Frequency 0 1 1 6 2 5 3 2 7 4 5 4 (a) Find the mean number of bananas. (3) There are 575 students in the school. The numbers of bananas eaten by students in class 1B are typical of the numbers eaten by students in the whole school. (b) Work out an estimate for the number of students in the whole school who will eat exactly one banana next week. Q4 (3) (Total 6 marks)

6	$f = \frac{uv}{v}$	Leave blank
0.	$f = \frac{1}{u+v}$ Work out the value of f when $u = 5.7$ and $v = -7.6$	
	<i>f</i> =	Q6
	(Total 3 marks)	
7.	The amount of petrol a car uses is directly proportional to the distance it travels. A car uses 3 litres of petrol when it travels 50 km.	
	(a) Work out the amount of petrol the car uses when it travels 125 km.	
	litres (2)	
	(b) Work out the distance the car travels when it uses 5.7 litres of petrol.	
	km (2)	Q7
	(Total 4 marks)	
8		
0		

On the grid, rotate triangle \mathbf{P} 90° anti-clockwise about the point (4, 2).

(2)

	Leave blank
10. Pat drops a ball onto a wooden floor.	
The ball bounces to a height which is 26% less than the height from which it is dropped.	
(a) Pat drops the ball from a height of 85 cm.	
Calculate the height to which it first bounces.	
(b) Pat drops the ball from a different height. It first bounces to a height of 48.1 cm.	
Calculate the height from which he dropped it.	
cm	
(3)	Q10
(Total 6 marks)	
11. Solve $\frac{5x+4}{3} = 2$	
<i>x</i> =	Q11
(Total 3 marks)	

		Leave blank
16. Diaconstruction D D	agram NOT curately drawn	
A, B, C and D are points on a circle with centre O. AOD is a diameter of the circle. Angle $AOB = 84^{\circ}$.		
(a) (i) Calculate the size of angle <i>ACB</i> .		
	o	
(ii) Cive a reason for your enguer		
(ii) Give a reason for your answer.		
	(2)	
(b) Calculate the size of angle <i>BCD</i> .		
	0	
	(2)	016
	(Total 4 marks)	
		17
I INNIIN IN INNIIN INNIINIINIINIINIINIIN	Т	urn ove

	Leave blank
(d) Find an estimate for the gradient of the curve at the point where $x = -1$	
(3)	
The equation $f(x) = k$, where k is a number, has 3 solutions between $x = -2$ and $x = 4$	
(e) Complete the inequalities which k must satisfy.	
< k <	
(2)	Q17
(Total 10 marks)	

		Leave blank
19. The probability that Gill will walk to school on Monday is $\frac{3}{5}$. If Gill walks to school on Monday, the probability that she will walk to school of	on	
Tuesday is $\frac{1}{6}$. If she does not walk to school on Monday, the probability that she will walk to school of Tuesday is $\frac{7}{10}$.	on	
(a) Calculate the probability that she walks to school on Monday but not on Tuesday.		
	 2)	
(b) Calculate the probability that she walks to school on at least one of the two days.		
(3)	Q19
(Total 5 mark	s)	
	Tur	n over

	IIII INI IIII IIII IIII IIII IIII IIII	23
	END	
	TOTAL FOR PAPER: 100 MARKS	
	(Total 6 marks)	
		021
21. Solve the simultaneous equations	$y = 3x^2$ y = 2x + 5	
		blank

IGCSE MATHEMATICS 4400, NOVEMBER 2005 MARK SCHEME

Paper 3H

Q		Working	Answer	Mark		Notes
1	(a)	2 6 - 2 5128		2	B2	for 0.08717 or better
	(a)	2.0 2.3120	0.087179		DZ	(B1 for 2.5128 seen)
	(b)		0.087	1	B1	ft from (a) if <0.1
						Total 3 marks

2		one correct point plotted or stated second correct point plotted or stated correct straight line between -2 and 4	3	B1 B1 B1	-B1 if no y scale
					Total 3 marks

3		kite with sides correct lengths correct arcs radius 7.6cm seen correct arcs radius 4.3cm seen correct kite	4	B1 M1 M1 A1	allow ±2mm allow ±2mm allow ±2mm within guidelines dep on both M marks	
					Т	otal 4 marks

4	(a)	(0x1) + (1x6) + (2x5) + (3x2) +		3	M1	for no. bananas x frequency
		(4x7) + (5x4)				
		OR 6 + 10 + 6 +28 + 20				
		70/25			M1	(dep on 1 st M1) for sum and ÷25
			2.8		A1	
	(b)	6/25 x 575		3	B1	for 6/25 seen
					M1	for 6/25 x 575
			138		A1	
						Total 6 marks

5	$\angle ACD = 18^{\circ}$ alternate angles 180 - 2 x "18" isosceles \triangle and \angle sum of \triangle	144	5	B1 B1 M1 B1 A1	stated or shown on diagram for both ft from "18"
					Total 5 marks

6	5.7 x -7.6 or -43.32 5.7 - 7.6 or -1.9	22.8	3	M1 M1 A1	сао
					Total 3 marks

7	(a)	3 x 125/20	7.5	2	M1 A1	сао
	(b)	50 x 5.7/3 or 5.7 = 3 <i>d</i> / 50	95	2	M1 A1	сао
						Total 4 marks

8	(a)		H(L+W)	3	B1	for N = expression with L,W,H
			$N = \frac{1}{6}$ oe		B2	for $\frac{H(L+W)}{6}$ oe
						(B1 for $\frac{L+WH}{6}$, $L+\frac{WH}{6}$ etc)
	(b)	P = 2L + 2W		2	M1	
			$(N =) \frac{PH}{12}$		A1	for $\frac{PH}{12}$ oe; condone missing N=
						Total 5 marks

9	(a)	correct image	2	B2	B1: rotation 90° about any centre or rotation 90° clockwise about (4,2) or 2 vertices correct
	(b)	correct image	2	B2	B1: enlargement with scale factor ½ (or -½) from any centre or 2 vertices correct
					Total 4 marks

10	(a)	26/100 x 85 or 22.1 85 - "22.1"	62.9	3	M1 M1 A1	(dep) or M2 for 74/100 x 85
	(b)	48.1 / 0.74	65	3	B1 M1 A1	for 0.74 seen for 48.1 / 0.74 cao
						Total 6 marks

11	5x + 4 = 6 5x = 2	2/5	3	M1 M1 A1	
					Total 3 marks

12	(a)	(i) (ii)	42 - 44 10 - 12	2	B1 B1	
	(b)	UQ = 41 - 43 LQ = 10 - 12	28 - 33	2	M1 A1	for reading at 25 and 75 stated or cfs of 25 and 75 indicated on graph
						Total 4 marks

13		lines region	4	B3 B1	B1 for each correct line for correct region shaded in or out
					Total 4 marks

14	(a)	$8^{2} + 8^{2} = 64 + 64 = 128$ $\sqrt[]{128"}$ 11.3137 $\frac{11.31378}{2}$	4	M1 M1 A1 B1	for 8 ² + 8 ² (dep)
		OR $4^{2} + 4^{2} = 16 + 16 = 32$ $\sqrt{32}$ 5.6568 5.6568 4		M1 M1 M1 B1	

(b)	8 ² + 1.66 ² - 2 x 8 x1.66cos45°		3	M1	
	or 8 ² + 9.66 ² - 2 x 8 x9.66cos45° 47.974	6.93		A1 A1	for 6.93 or better
	OR $PX=AX = 1.66\cos 45^\circ = 1.173$ $(8 - "1.173")^2 + "1.173"^2$ OR OD = 4 + 1.66 = 5.66 $5.66^2 + 4^2$	6.93		M1 M1 A1 M1	dep for 6.93 or better
		6.93		M1 A1	for 6.93 or better
					Total 7 marks

15	(a)	$-2 \le x \le 2$	2	B2	B1 $x \le 2$ or $x \ge -2$ or $-2 < x < 2$ or $x \le \pm 2$ or $x \le \sqrt{4}$
	(b)	solid circles at 2 and -2 line joining circles	2	B1 B1	ft from (a) SC if $x \le 2$ in (a) award B1 for solid circle at 2 and B1 for line to left
					Total 4 marks

16	(a)	(i)	42	2	B1	Cao
		(ii)	angle at centre =		B1	
			2 x angle at circumference			

(b)	90 + "42" or 180 - 48	132	2	M1 A1	ft from "42"
					Total 4 marks

17	(a)		2	1	B1	сао
	(b)		-1	2	B1	сао
			2		B1	accept 1.9
	(C)	f (4)		2	M1	
			-14		A1	accept -13 to -14 inclusive
	(d)	tangent drawn at (-1,9) vertical difference		3	M1	within guidelines
		horizontal difference			M1	of points on tang or chord near (-1,6)
			≈ -9		A1	dep on second M1
	(e)		2	2	B1	сао
			6		B1	cao
						Total 10 marks

18	$\frac{4\pi}{3} \times 5^{3} - \frac{4\pi}{3} \times 4.6^{3}$ 523.59 407.72	116	4	M1 B1 B1 A1	for $\frac{4\pi}{3}R^3 - \frac{4\pi}{3}r^3$ R = 5 used correctly r = 4.6 used for 116 or better (115.878) ft from r if $4 < r < 5$
					Total 4 marks

19	(a)	$\frac{3}{5} \times \frac{5}{6}$	$\frac{1}{2}$	2	M1 A1	
	(b)	$\frac{\frac{3}{5} + \frac{2}{5} \times \frac{7}{10}}{\text{or } \frac{3}{5} \times \frac{5}{6} + \frac{2}{5} \times \frac{7}{10} + \frac{3}{5} \times \frac{1}{6}}{\text{or } \frac{1}{2} + \frac{2}{5} \times \frac{7}{10} + \frac{3}{5} \times \frac{1}{6}}{\text{or } 1 - \frac{2}{5} \times \frac{3}{10}}$	$\frac{44}{50}$ or $\frac{22}{25}$	3	M1 M1	for one correct product or term for complete correct expression SC if no marks in either part M1 for correct tree diagram
						Total 5 marks

20	(a)	(i)	5	3	B1	сао
		(ii)	7		B1	cao
		(iii)	9		B1	ft from 24 - (3 + w + x)
	(b)	(i)	3	3	B1	cao
		(ii)	15		B1	ft from <i>w</i> + <i>x</i> + 3
		(iii)	0		B1	cao
						Total 6 marks

21	$3x^2 = 2x + 5$		6	M1	
	(3x - 5)(x + 1) = 0		•	M1	for correct factorisation
	$x = \frac{5}{3}$ and $x = -1$			A1A1	dep on both method marks
	e.g. 2 x " $\frac{5}{3}$ " + 5 2 x "-1" + 5			M1	for substituting both their x values into one of the original equations
		$x = \frac{5}{3}, y = \frac{25}{3}$		A1	for both pairs; dep on first M1
	OP	x = -1, y = 5			
	$(\mathbf{w}, \mathbf{E})^2$				
	$y = 3\left(\frac{y-3}{2}\right)$			M1	
	(3y - 25)(y - 3) = 0			M1	for correct factorisation
	$y = \frac{25}{3}$ and $y = 3$			A1 A1	dep on both method marks
	e.g. $\frac{25}{3} = 2x + 5$			М1	for substituting both their <i>x</i> values into one of the original equations
	S = ZX + S	$x = \frac{5}{3}, y = \frac{25}{3}$ x = -1, y = 3		A1	for both pairs; dep on first M1
		······································			Total 6 marks
					PAPER TOTAL 100 MARKS

Centre No.				Surname	Initial(s)
Candidate	e No.			Signature	

Paper Reference(s)	Exami	ner's use	e only
London Examinations IGCSE	Team Le	eader's u	ise only
Mathematics			
Paper 4H	[Page Number	Leave Blank
Higher Tier		3	
Monday 7 November 2005 Morning		4	
Wonday / November 2005 – Wonning		5	
Time: 2 hours		6	
Materials manipul for anomination Items included with an action non-		7	
Ruler graduated in centimetres and Nil		8	
millimetres, protractor, compasses, pen, HB pencil, eraser, calculator.		9	
Tracing paper may be used.		10	
		11	
Instructions to Candidates		12	
In the boxes above, write your centre number and candidate number, your surname, initial(s) and	_	13	
The paper reference is shown at the top of this page. Check that you have the correct question paper	er.	14	
Answer ALL the questions in the spaces provided in this question paper. Show all the steps in any calculations.			
Information for Candidates	Ì	16	
There are 20 pages in this question paper. The total mark for this paper is 100. The marks for parts of questions are shown in round breakets:	. 1	17	
e.g. (2).	·	18	
You may use a calculator.	ŀ		

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2005 Edexcel Limited.

19

20

Total

Turn over

Answer ALL TWENTY ONE questions	Leave blank
Write your answers in the snaces provided	
Vou must write down all the stages in your working	
fou must write down an the stages in your working.	
1. $A = \{\text{Prime numbers between 10 and 16}\}$ $B = \{\text{Multiples of 3 between 10 and 16}\}$	
(a) List the members of $A \cup B$.	
(2)	
(b) What is $A \cap B$?	
(1)	
(c) Is it true that $11 \in B$?	
Explain your answer.	
(1)	Q1
(Total 4 marks)	

2.	Two	o fruit drinks, <i>Fruto</i> and	Tropico, are sold in cartons.		Leave blank
	(a)	<i>Fruto</i> contains only ora The ratio of orange to 1 A carton of <i>Fruto</i> conta	ange and mango. mango is $3:2$ ains a total volume of 250 cm^3		
		Find the volume of ora	nge in a carton of <i>Fruto</i> .		
				cm ³ (3)	
	(b)	<i>Tropico</i> contains only 1 The ratios of lemon to The volume of grapefre	emon, lime and grapefruit. lime to grapefruit are 1:2:5 uit in a carton of <i>Tropico</i> is 200 cm ³ .		
		Find the total volume of	of <i>Tropico</i> in a carton.		
				cm ³ (3)	Q2
				(Total 6 marks)	
3.	(a)	Factorise	$x^2 - 5x$		
				(1)	
	(b)	Multiply out	x(2x+3y)	(1)	
				(2)	
	(c)	Expand and simplify	(x-4)(x+2)		
				(2)	Q3
				(Total 5 marks)	

7. Here is a four sided spinner.

Its sides are labelled 1, 2, 3 and 4

The spinner is biased.

The probability that the spinner lands on each of the numbers 1, 2 and 3 is given in the table.

Number	Probability
1	0.25
2	0.25
3	0.1
4	

The spinner is spun once.

(a) Work out the probability that the spinner lands on 4

Leave blank 10. The table shows the populations of five countries. Country Population The Gambia 1.4×10^{6} Kenya 3.2×10^{7} Mali 1.2×10^{7} Nigeria 1.4×10^{8} Swaziland 1.2×10^{6} (a) Which of these countries has the largest population? (1) (b) Calculate the difference between the population of Kenya and the population of Nigeria. Give your answer in standard form. (2) (c) The population of South Africa is 30 times the population of The Gambia. Calculate the population of South Africa. Give your answer in standard form. (1) Q10 (Total 4 marks)

Turn over

(b) Write down the equation of the line L.	Leave blank
(c) Another bike hire shop charges £3 with an additional charge of £1.50 per hour. Find the time for which the two shops' charges are equal.	
hours (2)	Q12
(Total 7 marks)	

13. A bag contains 1 red disc, 2 blue discs and 3 green discs.

Leave blank

(3)

Xanthe chooses a disc at random from the bag. She notes its colour and replaces it. Then Xanthe chooses another disc at random from the bag and notes its colour.

(a) Complete the probability tree diagram showing all the probabilities.

(b) Calculate the probability that both discs are the same colour.	Leav blan
(3) (c) Calculate the probability that neither disc is red.	
(2)	Q13
(Total 8 marks)	
Calculate the upper bound of the number of tins which will be required.	Q14
(Total 3 marks)	. /
(Total 3 marks)	

IGCSE MATHEMATICS 4400, NOVEMBER 2005 MARK SCHEME

Paper 4H

Q		Working	Answer	Mark		Notes
1	(a)		11, 12, 13, 15	2	B2	one omission B1 one extra prime or mult of 3: B1
	(b)		Ø or empty set or nothing oe	1	B1	not "0" or "A intersection B"
	(C)		No; 11 isn't a multiple of 3	1	B1	
						Total 4 marks

2	(a)	250 / 5 x 3	150	3	M1 M1 A1	either order
	(b)	200 / 5 x 8	320	3	M1 M1 A1	either order or each x 40, add
						Total 6 marks

3	(a)	<i>x</i> (<i>x</i> - 5)	1	B1	
	(b)	$2x^2$ + 3xy	2	B1B1	
	(c) $x^2 - 4x + 2x - 8$	$y^2 = 2y = 8$	2	M1	3 correct terms or 4 correct terms ignoring signs
					Total 5 marks

4	(a)		24 ± 1, 84 ± 1	2	B1B1	22 & 82: SC B1
	(b)		home oe	1	B1	not "at destination"
	(C)		0 to 40	1	B1	or range within this
	(d)	5/20 or 5 x 3	14.4 to 15	2	M1 A1	(4.4 to 6) / 20 or other correct
	(e)		84 ± 2	1	B1	ft(a)
						Total 7 marks

5	(a)		220 ± 2	2	B2	B1 for 180 <angle<270< th=""></angle<270<>
	(b)	four construction arcs seen	line, length >4cm	2	B1 B1	± 2 mm of correct
	(c)		300	1	B1	
						Total 5 marks

6	(a)	rotation 90° (clockwise) about (2, 0)	3	B1 B1 B1	or 270° anticlockwise any extra transf: B0
	(b)	FTTF	2	B2	B1 for three correct
					Total 5 marks

7	(a)	1 - (0.25 + 0.25 + 0.1)	0.4	2	M1 A1	(1 - 0.51 =) 0.49 : allow M1
	(b)	0.25 + 0.1	0.35	2	M1 A1	(0.25 + 0.1 =) 0.26 : allow M1
						Total 4 marks

8	mid-points attempted $\Sigma f x$ attempted (190) $\div \Sigma f$ (20)	9.5	4	B1 M1 M1 A1	Consistent x in range dep M1
					Total 4 marks

9	cos68=4.8/x or 4.8=xcos68 x = 4.8 / cos68	12.8	3	M1 M1 A1	
					Total 3 marks

10	(a)	Nigeria	1	B1	
	(b)	1.08 x 10 ⁸	2	B2	figs 108 : B1
	(c)	4.2 x 10 ⁷	1	B1	
					Total 4 marks

11	(a)		$x^{2} + (x + 2)^{2} = (x + 3)^{2}$	1	B1	oe brackets essential; ISW
	(b)	correctly expand one bracket all terms seen & correct collect	ion	2	B1 B1	allow seen in (a)
	(c)	$x = (2 + J((-2)^2 - 4 \times (-5))/2$ oe x = 3.4 (or better)	3.4, 5.4, 6.4	3	M1 A1 B1f	ignore other ans, if given ft her 3.4
						Total 6 marks

12	(a)	(i) vertical ÷ horizontal (ii)	2 hourly charge oe	2 1	M1 A1 B1	
	(b)		y = 2x + 1	2	B1B1	B1f: (his 2)x ; B1: +1; -B1 if no 'y ='
	(c)	line through (0,3) grad = 1.5 or	1 + 2x = 3 + 1.5x 4	2	M1 A1	
						Total 7 marks

13	(a)		1/3 & 1/2 oe	3	B1	correctly placed once
			correct structure		B1	just branches
			all correct		B1	including probabilities and labels
	(b)	(1/6) ² or (1/3) ² or (1/2) ² oe		3	M1	
		add these			M1	
			7/18 or 0.38(8) or 0.39 oe		A1	
	(C)	(5/6) ²		2	M1	
			25/36 or 0.69(4) oe		A1	
						Total 8 marks

14	max/min attempted 1005 / 2.45	411	3	M1 M1 A1	410 : sc B2
					Total 3 marks

15	(a)		3 <i>x</i> ² - 12	2	B2	B1 each term; -B1 for extra
	(b)	3 x 0 ² - 12		2	M1	
			-12		A1	
	(C)	(his $3x^2 - 12$) = 0		4	M1	
		(x - 2)(x + 2) = 0			M1	or $x^2 = 4$
		or (3x - 6)(x + 2) = 0 oe				
		x = 2 or -2 or (2,1)			A1	
			A is (-2, 33), C is (2, 1)		A1	
						Total 8 marks

16	20 or (x + 10) seen 9 x 20 = 10 (x + 10)	x = 8	3	M1 M1 A1	or 9 x 20 / 10 oe
					Total 3 marks

17	(a)		$-1 \leq f(x) \leq 1$	2	B1B1	or -1 to 1 oe
	(b)	range of g : 0 to 1	<i>p</i> = 0, <i>q</i> = 45	3	В3	both correct : B3 g : 0 to 1 & one end correct : B2 g : 0 to 1 <u>or</u> one end correct : B1
						Total 5 marks

18	(a)		3/2	1	B1	
	(b)	$\frac{1}{16\sqrt{2}} \text{or} \frac{\sqrt{2}}{\sqrt{2}} \times \frac{1}{\left(\sqrt{2}\right)^9}$ $\frac{\sqrt{2}}{\sqrt{2}} \times \frac{1}{16\sqrt{2}} \text{or} \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{10}}$	$\frac{\sqrt{2}}{32}$ or $\frac{\sqrt{512}}{512}$	3	M1 M1 A1	or $\left(\frac{\sqrt{2}}{2}\right)^9$ or $\frac{1}{\sqrt{512}}$ or $\frac{16\sqrt{2}}{512}$ or $\frac{1}{\sqrt{512}} \times \frac{\sqrt{512}}{\sqrt{512}}$
						Total 4 marks

19	sees that 1 square = 12 stones 12 x total no. of squares (29)	348	3	M1 M1 A1	or correct scale shown or correctly uses his scales to find total area
					Total 3 marks

20		(7, -1)	2	B2	B1 each coordinate
					Total 2 marks

21	$5^{2} + 5^{2}$ or $10^{2} + 10^{2}$ $\sqrt{50}$ or $\frac{1}{2}$ $\sqrt{200}$ or 7.07 () tan VAM = 12 / (her 7.07) oe	59.49() or 59.5	4	M1 M1 M1 A1	dep 1 st M1
					Total 4 marks
					PAPER TOTAL 100 MARKS

Centre No.				Surname	Initial(s)
Candidate No.				Signature	

Paper Reference(s) Ex	xaminer's use only				
4400/311					
London Examinations IGCSE	1 Leader's u	ise only			
Mathematics					
Paper 3H	Page Numbers	Leave Blank			
Higher Tier	3				
	4				
Friday 5 May 2006 – Morning	5				
Time: 2 hours	6				
	7				
Materials required for examination Items included with question papers	8				
millimetres, protractor, compasses,	9				
pen, HB pencil, eraser, calculator. Tracing paper may be used.					
	11				
Instructions to Condidates					
In the boxes above, write your centre number, candidate number, your surname, initial(s) and	13				
signature. The paper reference is shown at the top of this page. Check that you have the correct question paper.					
Answer ALL the questions in the spaces provided in this question paper.					
	16				
Information for Candidates	17				
The total mark for this paper is 100. The marks for parts of questions are shown in round brackets:					
You may use a calculator.					
Advice to Candidates					
Write your answers neatly and in good English.					
	Total				
	Total				

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2006 Edexcel Limited.

Turn over

Answer ALL TWENTY-THREE questions.	Leave blank
Write your answers in the spaces provided.	
You must write down all stages in your working.	
 The surface area of the Earth is 510 million km². The surface area of the Pacific Ocean is 180 million km². 	
(a) Express 180 million as a percentage of 510 million. Give your answer correct to 2 significant figures.	
%	
The surface area of the Arctic Ocean is 14 million km ² . The surface area of the Southern Ocean is 35 million km ² .	
(b) Find the ratio of the surface area of the Arctic Ocean to the surface area of the Southern Ocean.Give your ratio in the form 1 : n.	
1 :	
(2)	Q1
(Total 4 marks)	
2. Solve $7 - 4x = 10$	
$x = \dots$	Q2
(Total 3 marks)	
	3

The capsules move in a circle of diameter 135 m.	Leave blank
(c) Calculate the distance moved by a capsule in making a complete revolution. Give your answer correct to 3 significant figures.	
m (2)	
The capsules move at an average speed of 0.26 m/s.	
(d) Calculate the time taken for a capsule to make a complete revolution.Give your answer in minutes, correct to the nearest minute.	
min (3)	Q10
(Total 9 marks)	
11. Write as ordinary numbers	
(i) 3.6×10^5	
(ii) 2.9×10^{-3}	
	Q11
(Total 2 marks)	
	9
	urn over

- 14. Here is a biased spinner. When the pointer is spun, the score is 1 or 2 or 3 or 4 The probability that the score is 1 is 0.3The probability that the score is 2 is 0.6Hajra spins the pointer once. (a) Work out the probability that (i) the score is 1 or 2 (ii) the score is 3 or 4 Nassim spins the pointer twice. (b) Work out the probability that (i) the score is 1 both times, (ii) the score is 2 exactly once.
 - (5)

(3)

(Total 8 marks)

Q14

IIIIN N 2 4 6 4 6 A 0 1 2 2 0

N 2 4 6 4 6 A 0 1 3 2 0

blank "When the fraction $\frac{n}{45}$ is converted to a decimal, it never gives a 17. Michael says terminating decimal." (a) (i) Find a value of *n* which shows that Michael is wrong. *n* = (ii) Write down the name of the type of number *n* must be, when $\frac{n}{45}$ gives a terminating decimal. (2) (b) $\frac{62}{45} < \sqrt{2} < \frac{64}{45}$ Use these bounds to write the value of $\sqrt{2}$ to an appropriate degree of accuracy. You must show your working and explain your answer. (2) Q17 (Total 4 marks)

Leave

m	Q18
(Total 5 marks)	

20. Make <i>R</i> the subject of the formula $A = \pi(R + r)(R - r)$		Leave blank
	<i>R</i> =	Q20
	(Total 4 marks)	
21. $(1+3\sqrt{5})^2 = p + q\sqrt{5}$ where <i>p</i> and <i>q</i> are integers. Find the value of <i>p</i> and the value of <i>q</i> .	<i>p</i> =	
	<i>p</i> –	Q21
	(Total 2 marks)	

	~ > _ ²	Leave blank
23.	$\mathbf{f}(x) = x^2$	
	g(x) = 2x + 3	
Solve $fg(x) = f(x)$.		
		Q23
	(Total 5 marks)	
	TOTAL FOR PAPER: 100 MARKS	
	END	
Edexcel gratefully acknowledges the follo	owing source used in the preparation of this paper.	
• Filotograph of London Eye: www.fre	501010.00111	

4400 IGCSE Mathematics May 2006 Paper 3H

Q		Working	Answer	Mark		Notes
1.	(a)	$\frac{180}{510} \times 100$		2	M1	for $\frac{180}{510}$ or 0.35
			35		A1	for 2 sf or better (35.2941)
	(b)	$\frac{35}{14}$		2	M1	for $\frac{35}{14}$ SC Award M1 for 0.4 oeor for 2 : 5
			2.5		A1	for 2.5 or $2\frac{1}{2}$ or $\frac{5}{2}$
						Total 4 marks

2.	7 = 4x + 10 or -4x = 10 - 7		3	M1	may be implied by second M1
	4x = -3 or -4x = 3			M1	
		$-\frac{3}{4}$ or -0.75		A1	Condone $\frac{3}{-4}$
					Total 3 marks

3.		reflection	2	M1	Accept reflect, reflected, reflex etc
		y = 3		A1	Accept e.g. 'in dotted line'
					Total 2 marks

4.	(a)	9 + 12		2	M1	for 9 or + 12	-9 - 12 = 21
			21		A1	cao	scores M0 A0
	(b)	(i)	p^8	2	B1	сао	·
		(ii)	$ q^{6}$		B1	cao	
							Total 4 marks

5.	(a)	1,1,1,1,1,1,2,2,2,3,4,5,5,5,5 or $7\frac{1}{2}$ or 8 seen		2	M1	
		-	2		A1	сао
	(b)	1×6 + 2×3 + 3×1 + 4×1 + 5×4 or 6 + 6 + 3 + 4 + 20 or 39 "39" ÷ 15		3	M1 M1	for at least 3 products (need not be evaluated or summed) (dep) for "39" ÷ 15
			2.6		A1	сао
						Total 5 marks

6.	(a)	$\frac{12}{15}$ or $\frac{2}{5} \times 2$		2	M1	
			$\frac{4}{5}$		A1	cao Do not accept decimals
	(b)	$\frac{8}{3} \times \frac{6}{5}$		2	M1	for $\frac{8}{3} \times \frac{6}{5}$ may be implied by $\frac{48}{15}$ or
						$\frac{16}{5}$ but not by 3.2
			$3\frac{1}{5}$		A1	cao Do not accept decimals
						Total 4 marks

7.	7.5 ² - 7.2 ² or 4.41		3	M1	for squaring and subtracting
	$\sqrt{7.5^2 - 7.2^2}$			M1	(dep) for square root
	• • • •	2.1		A1	cao
					Total 3 marks

8.	2 + 3 + 4 or 9 seen		2	M1	for 2 + 3 + 4 or 9 seen or for 6 seen
		24		A1	Accept 12 : 18 : 24
					Total 2 marks

9.			3	B3	B3 for correct R shaded in or out
					Condone omission of label
					B2 for single shaded shape with 3 correct
					boundaries
					or for parts of both regions
					unambiguously shown
					or for 3 or 4 correct lines + 0 incorrect
					B1 for single shaded shape with 2 correct
					boundaries
					or for square parts of both regions
					ambiguously shown
					or for 2, 3 or 4 correct lines + one or
					more incorrect
		R shown			SC B1 for region bounded by $1 \le y \le 3$
					and −4 <u><</u> x <u><</u> −2
					Total 3 marks

10.	(a)		360 ÷ 32 or 32 × 11.25 = 360	1	B1	Accept also $\frac{180}{16}$ and $\frac{360}{11.25} = 32$
	(b)	11.25		3	M1	
		$\frac{-1}{2}$ or 180 - 11.25 = 168.75				
		and $\frac{180-"168.75"}{2}$				
			5.625		A1	may be stated or shown on diagram
			84.375 or 95.625		A1	Accept 84.4, 84.38, 84.37, 95.6, 95.62, 95.62
	(C)	π × 135		2	M1	
			424		A1	Accept any value rounding to 424
	(d)	"424" ÷ 0.26 or 1630		3	M1	for division for 0.26
		"1630" ÷ 60			M1	(dep on first M1) for division by 60
			27		A1	for 27, 27.2 or answer truncating to 27.1
						ft from answer to (c)
						Total 9 marks

11.	(i)	360 000	2	B1	сао
	(ii)	0.0029		B1	Accept 29
					Total 2 marks

12.	$eg\frac{25}{15} = 1.67 \text{ and } \frac{20}{10} = 2$		3	M1	e.g. for $\frac{25}{15}$
	$\frac{15}{10} = 1.5$ and $\frac{25}{20} = 1.25$			M1	for $\frac{20}{10}$, consistent pairing
		"No" indicated		A1	dep on both M marks, inc. evaluation or simplest forms of ratios
					Total 3 marks

13.	(a)	$12x^2 + 21x - 20x - 35$	$12x^2 + x - 35$	2	M1	for 4 correct terms ignoring signs or 3 correct terms with correct signs Accept $12x^2 + 1x - 35$		
	(b)		8p ¹²	2	B1	for 8	B2 for $8 \times p^{12}$	
					B1	for p ¹²	B1 for $8 \pm p^{12}$	
	(C)		16y ⁴	2	B1	for 16	B2 for $16 \times y^4$	
					B1	for y⁴	B1 for $16 \pm y^4$	
							Total 6 marks	

			0.48		A1		still scores M1.
		or $1 - (0.6 \times 0.6 + 0.4 \times 0.4)$ or $1 - (0.36 + 0.16)$			M2		gain full marks but 0.6 × 0.3 × 2
			0.48		A1	ft from "0.1"	method incorrect
		or 0.24 or 0.6×0.3×2 or 0.36 or 0.6×0.1×2 or 0.12 "0.24" × 2 oe			M1	dep on previous M1	that P(3) = P(4) = 0.5 makes the
		0.6×0.4 or 0.6×0.3 + 0.6×0.1			M1		The assumption
			0.09		A1		
	(b)	0.3 × 0.3		5	M1		
		(ii)	0.1		B1	ft 1 – "0.9"	
			0.9		A1		
14.	(a)	(i) 0.3 + 0.6		3	M1		

15.	(a)	1, 4, 6, 8	1	B1	Cao
	(b)	2,3,5 or 2,3,7 or 2,5,7 or 3,5,7	2	B2	B1 if one condition satisfied but do not award B1 for 2,3,5,7
					Total 3 marks

16.	(a)		1, -5	1	B1	Allow <u>+</u> 0.1 for y-coordi	Allow <u>+</u> 0.1 for y-coordinate		
	(b)	Points of intersection of curve a	and x-axis indicated	2	M1	May be implied by one	Allow		
						correct solution	solutions to		
			3.2 -1.2		A1	for both values seen	> 1dp unless		
						Allow <u>+</u> 0.1	there is clear		
						Condone coordinates	evidence that		
							the formula		
							has been used		
	(C)	$x^2 - 2x - 4 = x + 2$		3	M1	may be implied by 2nd M1			
		or y = x + 2 seen							
		line y = x + 2 drawn			M1				
			4.4 -1.4		A1	Allow <u>+</u> 0.1			
						Do not accept coordinat	tes		
	(d)		2x - 2	4	B2	B1 each term (-B1 each	extra term)		
		2 × 6 – 2 (or 10 seen)			M1	may be awarded if at le	ast B1 above		
			10		A1	cao			
				1			Total 10 marks		

17.	(a)	(i)	e.g. 9	2	B1	Accept any multiple of 9 inc 45, 90,		
						Must be positive whole number		
		(ii)	multiple of 9		B1	Accept 'in 9 times table' oe		
	(b)	1.3777 and 1.4222		2	M1	for converting to decimals with at		
						least 2 dp rounded or truncated		
			1.4 and agree to 2 sf or 1 dp oe		A1	1.4 and correct explanation needed		
						Total 4 marks		

18.	2.3sin 62°		5	M1	
	2.030			A1	At least 3 sf May be implied by correct
					final answer
	"2.030"			M1	
	$\tan 74^\circ =BQ$				
	or $tan 16^\circ = \frac{BQ}{BQ}$				
	"2.030"				
	$BO = \frac{"2.030"}{"}$			M1	
	tan74°				
	or <i>BQ</i> ="2.030"tan16°				
		0.582		A1	for 0.582 or better (0.582316)
					Award full marks for 0.58 if all
					preceding M marks scored
					ft from "2.030"
					(ft from $AD = 2 \rightarrow 0.5734$)
					Total 5 marks

19.	(a)	45 75	2	B2	B1 for each
	(b)	bar 17sq high, 10 sq wide	2	B2	B1 for each
		bar 16 sq high, 5 sq wide			NB 80 < <i>t</i> <u><</u> 90
					Total 4 marks

20.	$A = \pi (R^2 - r^2) \text{ or }$		4	M1	for R ² – r ² seen or divisi	on by π
	$\frac{A}{\pi} = (R+r)(R-r)$					
	$A = \pi R^2 - \pi r^2$ or $\frac{A}{\pi} = R^2 - r^2$			M1	for $A = \pi R^2 - \pi r^2$ or $\frac{A}{\pi} = R^2 - r^2$	This M1 also implies the first M1
	$R^2 = \frac{A + \pi r^2}{\pi}$ or $R^2 = \frac{A}{\pi} + r^2$			M1	for $R^2 = \frac{A + \pi r^2}{\pi}$ or $R^2 = \frac{A}{\pi} + r^2$	ft if (R + r)(R - r) expanded as $R^2 - r$ to a
		$\sqrt{\frac{A+\pi r^2}{\pi}}$ or $\sqrt{\frac{A}{\pi}+r^2}$ oe		A1	Condone omission of ± Do not award if followed by further incorrect 'simplifying'	3 marks
						Total 4 marks

21.	46	2	B1		Award B1 + B1 for
	6		B1	Condone $6\sqrt{5}$	$46+6\sqrt{5}$ seen
					and isw
					Total 2 marks

22.	$\pi \times 30^2 \times 5$		5	M1	
	or $\pi \times 30^2 \times 41 - \pi \times 30^2 \times 36$				
	$"\pi \times 30^2 \times 5" = \frac{4}{2}\pi r^3$			M1	dep on previous M1
	$r^{3} = \frac{3 \times "\pi \times 30^{2} \times 5"}{15 \times 30^{2}} \text{ or } \frac{15 \times 30^{2}}{15 \times 30^{2}}$			M1	dep on previous M1
	$\frac{4\pi}{\sqrt[3]{3\times''\pi\times30^2\times5''}}$ oe			M1	dep on previous M1
	$\sqrt{4\pi}$	15		A1	for 15 or for answer rounding to 15.0
					Total 5 marks

22	$(2x + 3)^2 - x^2$		5		for $(2x + 3)^2$ soon
25.	(2x + 3) - x		5	M1	101(2x+3) seen
	$4x^2 + 12x + 9 = x^2$			M1	
	or $4x^2 + 6x + 6x + 9 = x^2$			1	
	$3x^2 + 12x + 9 = 0$				
	5% 12% 7 = 0			M	
	(x + 1)(x + 3)			M1	Accept (3x + 3)(x + 3) & (3x + 9)(x + 1)
					-12 ± 6 -4 ± 2
					or $$
		1 2			
		-1 -3		A1	for both solutions isw
					Condone coordinates
	OR				
	$(2x + 3)^2 = x^2$		5		
	(2x+3) = x			M	
	$2x + 3 = \pm x$			M2	(M1 for 2x + 3 = x)
	x + 3 = 0 or $3x + 3 = 0$			111	for both
		1 2		////	for both solutions in a
		-1 -3		A1	for both solutions isw
					Condone coordinates
					Total 5 marks
					PAPER TOTAL 100 MARKS
	OR $(2x + 3)^2 = x^2$ $2x + 3 = \pm x$ x + 3 = 0 or 3x + 3 = 0	-1 -3	5	M1 M2 M1 A1	(M1 for 2x + 3 = x) for both for both solutions isw Condone coordinates Total 5 mark PAPER TOTAL 100 MARK

Centre No.				Surname	Initial(s)
Candida	te No.			Signature	

Paper Reference(s)	xaminer's use	e only
4400/4H		
London Examinations IGCSE	am Leader's u	ise only
Mathamatics		
wrathematics	[]	
Paper 4H	Page Numbers	Leave Blank
Higher Tier	3	
Tuesday 9 May 2006 – Morning	5	
Time: 2 hours	6	
	7	
Materials required for examinationItems included with question papersRuler graduated in centimetres andNil	8	
millimetres, pen, HB pencil, eraser, calculator	9	
Tracing paper may be used.	10	
	11	
Instructions to Candidates	12	
In the boxes above, write your centre number, candidate number, your surname, initial(s) and	13	
The paper reference is shown at the top of this page. Check that you have the correct question paper.	14	
Answer ALL the questions in the spaces provided in this question paper. Show all the steps in any calculations.	15	
Information for Candidates		
There are 16 pages in this question paper. All blank pages are indicated. The total mark for this paper is 100. The marks for parts of questions are shown in round brackets: $a \in (2)$		
You may use a calculator.		
Advice to Candidates		
Write your answers neatly and in good English.		
	Total	
This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2006 Edexcel Limited.	Turn	over

Printer's Log. No. N24647A W850/R4400/57570 4/3/3/4600

2.	(a) Factorise $3x^2 - 2x$	Leave blank
	(1)	
	(b) Expand $y^{3}(y-4)$	
	(2)	
	(c) Here is a formula used in physics.	
	v = u + at	
	Find the value of t when $v = 30$, $u = 5$ and $a = 10$	
	t =	
	(2)	Q2
	(Total 5 marks)	
3.	Arul had <i>x</i> sweets.Nikos had four times as many sweets as Arul.(a) Write down an expression, in terms of <i>x</i>, for the number of sweets Nikos had.	
	(1)	
	Nikos gave 6 of his sweets to Arul. Now they both have the same number of sweets.	
	(b) Use this information to form an equation in x .	
	(2)	
	(c) Solve your equation to find the number of sweets that Arul had at the start.	
	(2)	03
	(10tal 5 marks)	

5.	(a)	A = B =	{Quadril {Quadril	laterals laterals	with tw with at	o pairs of parallel sides least one right angle}	}	Leave blank
		Wri	te down 1	the mat	hematic	al name for the quadrila	aterals in	
		(i)	А,					
		(ii)	$A \cap B$.					
							(2)	
	(b)	The P = Q =	universa {Multipl {Multipl	ll set & les of 3 les of 5	= {Positions for the second se	tive whole numbers} n 11} n 11}		
		(i)	What is	$P \cap Q$?			
		(ii)	Is it true	that 10	$0 \in P \cup$	Q ?		
			Explain	your a	nswer.			
							(2)	05
							(Total 4 marks)	
							(Total 4 marks)	
6.						<u>Symbols</u>		
					+	- × ÷ ()		
	Usi	ng o	nly symb	ols froi	n the bo	x, make the following i	nto true statements.	
	(a)	2	3	4	=	14	(1)	
	(b)	2	3	4	=	1.25	(-)	
							(1)	
	(c)	2	3	4	=	$2\frac{2}{3}$	(1)	0(
							(1)	
							(lotal 3 marks)	

7.	(a)	Four numbers have a mean of 6 Three of the numbers are 3, 7 and 10 Find the other number.		Leave blank	
	(b)	Three numbers have a mode of 5 and a mean of 6 Find the three numbers.	(2)		
		Find four numbers which have a mode of 7 and a modian of 6	(2)		
	(C)	ring four numbers which have a mode of / and a median of 6			
			(2) (Total 6 marks)	Q7	
8.	(a)	Solve $3(x+4) = 27$			
			<i>x</i> =(3)		
	(b)	Solve $y^2 - 2y - 120 = 0$			
			<i>y</i> =(3)	Q8	
(Total 6 marks)					
1 144 1141 A14 1141 A141 A141 A141 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1 N 2 4 6 4 7 A 0 7 1 6					

7 A 0 N 2

10. A mobile phone company makes a special offer.	Leave blank
Usually one minute of call time costs 5 cents. For the special offer, this call time is increased by 20%.	
 (a) Calculate the call time which costs 5 cents during the special offer. Give your answer in seconds. 	
seconds (2) (b) Calculate the cost per minute for the special offer.	
cents (2) (c) Calculate the percentage decrease in the cost per minute for the special offer.	
% (3) (Total 7 marks)	Q10
	9

12. (a) Factorise completely $10x^2 - 2x$		Leave blank
	(2)	
(b) Factorise $x^2 - 9$		
	(1)	
(c) Factorise $3x^2 - 13x + 4$		
	(2)	Q12
	(Total 5 marks)	
13. (a) Express $8^{\frac{1}{2}}$ as a power of 2		
(b) Express $\sqrt{3}$ as a power of 9		
	(2)	
(c) Express $\frac{1}{4\sqrt{2}}$ as a power of 2		
		Q13
	(Total 7 marks)	
		11
\$\$\$!!!\$! \$!\$!!\$!! \$!\$!! \$!\$!! \$!\$!!! \$!\$!!! \$!\$!!! \$\$\$!!! \$\$!\$!! \$\$!\$!! \$\$!!! \$!\$!! \$!\$!! \$!\$!! \$!\$!! \$\$!!! N 2 4 6 4 7 A 0 1 1 1 6	Т	urn over

4 6 4 7 A 0 1 2 N 2

15. A ball is dropped from a tower.		Leave blank
After t seconds, the ball has fallen a distance x metres.		
x is directly proportional to t^2 .		
When $t = 2$, $x = 19.6$		
(a) Find an equation connecting x and t .		
	(3)	
(b) Find the value of x when $t = 3$		
<i>x</i> =	=	
	(2)	
(c) Find how long the ball takes to fall 10 m.		
	seconds	015
	(3)	QIS
	(Total 8 marks)	
		13
	Т	urn over

 $| \underbrace{1}_{N} \underbrace{1}_{N} \underbrace{1}_{2} \underbrace{1}_{4} \underbrace{1}_{6} \underbrace{1}_{4} \underbrace{1}_{4} \underbrace{1}_{4} \underbrace{1}_{4} \underbrace{1}_{6} \underbrace{1}_{4} \underbrace{1}_{4} \underbrace{1}_{6} \underbrace{1}_{4} \underbrace{1}_{4} \underbrace{1}_{6} \underbrace{1}_{4} \underbrace{1}_{4} \underbrace{1}_{6} \underbrace{1}_{6} \underbrace{1}_{4} \underbrace{1}_{6}

	Le bl	ave ank
18. A particle moves along a line. For $t \ge 1$, the distance of the particle from <i>O</i> at time <i>t</i> seconds is <i>x</i> metres, where		
20		
$x - \frac{1}{t}$		
Find an expression for the acceleration of the particle.		
m/s ²	<u>Q1</u>	.8
(Total 3 marks)	+	
TOTAL FOR PAPER: 100 MARKS		
END		

4400 IGCSE Mathematics May 2006 Paper 4H

1.	1⁄2(180 - 38)	71 seen Isosceles Corresponding	4	M1 A1 B1 B1	Allow on diag or <s <u="" line="" on="" st="">& interior <s. "f"<br="" not="">or vert opp <s <u="">& alt <s< th=""></s<></s></s.></s>
					Total 4 marks

2.	(a)		x(3x -2)	1	B1	
	(b)		y ⁴ -4y ³	2	B1B1	Incorr subs wking: - B1. Corr fact'n ISW
	(C)	30 = 5 + 10t			M1	or (30 - 5)/10
			<i>t</i> = 2.5	2	A1	
						Total 5 marks

3.	(a)	4x		1	B1	or 4 x x or x4. Ignore "y = ", not "x="
	(b)	4x - 6 or x + 6			M1	
			4x - 6 = x + 6	2	A1	
	(C)	3x - 6 = 6 or $4x = x + 12$			M1	correctly collect either xs or consts
						ft (b) (if \geq 3 terms, lin = lin): M1 only
			4	2	A1	cao Allow $x = 4$
						Total 5 marks

						Total 6 marks
			10(.17) or 10.2	3	A1	Allow 10 with working
		12 x cos 32°			M1	or $\sqrt{(12^2 - (12\sin 32)^2)}$
	(b)	$\cos 32^{\circ} = ML/12$			M1	May be implied or 12^2 - $(12\sin 32)^2$
			30	3	A1	
		$\sin x^{\circ} = 4/8$ oe			M1	
4.	(a)	4/8 or 0.5 oe			M1	

5.	(a)	(i)	Parallelograms	1	B1	
		(ii)	Rectangles	1	B1	Allow "Squares & rectangles"
	(b)	(i)	Ø or {} or empty oe	1	B1	Allow "Intersection of P & Q" oe
		(ii)	Yes. 10 \in Q or 10 is mult of 5			
			or 3, 5, 6, 9, 10 listed	1	B1	
						Total 4 marks

6.	(a)	2 + 3 x 4	or 2 x (3 + 4)	1	B1	or 2 + (3 x 4) or 2(3 + 4)
	(b)	(2 + 3) ÷ 4	or 2 - 3 ÷ 4	1	B1	or 2 - (3 ÷ 4)
	(C)	2 ÷ 3 x 4	or 2 ÷ (3 ÷ 4)	1	B1	or (2 ÷ 3) x 4
						Total 3 marks

7.	(a)	4 x 6 - (3 + 7 + 10)			M1	or 3 + 7 + 10 + x = 4 x 6
			4	2	A1	embedded: M1A0
	(b)		5, 5, 8		B2	B1: 3 nos with mode 5 or mean 6
				2		or 5, 5, x: B1
	(C)		7, 7, 5, (any no < 5)	2	B2	B1: 4 nos with mode 7 OR median 6
						Total 6 marks

8.	(a)	3x + 12 = 27			M1	
		3x = 15			A1	x + 4 = 9: M1A1
			5	3	A1	
	(b)	(y - 12)(y + 10)				allow $(y \pm 12)(y \pm 10)$
		or $\underline{Z \pm \sqrt{((-Z)^2 - 4x(-1ZU))}}$			MI	correct subst n
		2	y = 12 or -10	3	A1A1	NB corr ans from inc wking: A0A0
						T & I: 3mks or 0 mks
						Total 6 marks

9.	(a)	35 ² - 10 ²			M1	$20^2 = 35^2 + 35^2 - 2x35x35xcosA$	$ 35^2 = 35^2 + 20^2 - 2x35x20xcosB$
						or sin x = 10/35	or cos <i>B</i> = 10/35
		33 to 34			A1	33(.2)	73(.4)
		½ x 20 x"ht"			M1	½ x 35 ² x sin"33.2"	½ x 35 x 20 x sin "73.4"
			335	4	A1		
	(b)	$40^2 = 20^2 + 30^2 - 2 \times 20 \times 30 \cos x$			M1	May be implied	
		$\cos x = 20^{2} + 30^{2} - 40^{2}$ (= -0.25)			M1	or cosx = <u>-300</u> oe	
		2 x 20 x 30	104 to			1200	
			105	3	A1	Scale drawing: M0A0	
							Total 7 marks

10.	(a)	60 x 20/100 or 12 sec or 1.2 min			M1	
		seen				
			72	2	A1	
	(b)	5 / 72 x 60 or 5 / 1.2			M1	or 5/6 x 5
			4.16 to 4.17	2	A1f	or4 or 4.2 with wking (eg 5:72 = x:60)
						ft only if wking NB!!! 80% of 5 = 4
	(C)	"4.167"/5 x 100 5 - "4.167"			M1	
		100 - "83.3" (*0.833"/5 x 100			M1	ft M mks only if wking
			16.6% to 17%	3	A1	cao
						Total 7 marks

11.	(a)		80 to 81 incl	1	B1	Consistent use of
						total = 50 in (abc):
						(a) B0
	(b)	Read graph at 70(±1) & 92 - 94			M1	(b) Read at 72(±1) &
		eg marks on curve or x-axis				109-111: M1A0
			21 - 24	2	A1	
	(C)		20 cao	1	B1	(c) 25 cao: B1
	(d)	Read graph at 100 (±1)			M1	eg 34(±1) seen
			6 or 7	1	A1	
						Total 6 marks

12.	(a)	2x(5x -1)	2	B2	B1 for $2(5x^2 - x)$ or $x(10x - 2)$
	(b)	(x - 3) (x + 3)	1	B1	
	(C)	(3x - 1)(x - 4)	2	B2	B1 for $(3x \pm 1)(x \pm 4)$ ISW
					Total 5 marks

13.	(a)	2 ³ seen			M1	
			$2^{3/2}$ or $2^{1.5}$ or $2^{1\frac{1}{2}}$	2	A1	
	(b)	9 ^{1/2} seen			M1	
			9 ^{1/4} or 9 ^{0.25}	2	A1	
	(C)	$\left \begin{array}{c} \frac{1}{2^2 \times 2^{\frac{1}{2}}} \\ \end{array} \right \left \begin{array}{c} \frac{1}{\sqrt{32}} \\ \frac{1}{\sqrt{32}} \\ \end{array} \right \left \begin{array}{c} \frac{\sqrt{2}}{8} \\ \end{array} \right $			M1	
		1 1 $2^{0.5}$			M1	or 2 ⁻² x 2 ^{-1/2} : M2
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 ^{-5/2} or etc	3	A1	
						Total 7marks

14.	(a)		$\begin{pmatrix} 5\\2 \end{pmatrix}$	1	B1	Ignore fraction lines thro'out		
	(b)	(i)	$\binom{5}{2}$ oe	1	B1f	or \overrightarrow{kOB} oe	Not <i>x</i> or 0.5 for <i>k</i>	
		(ii)	$-\binom{1}{2} + \binom{5}{2}$ oe	1	B1f	or $-\overrightarrow{OA} + \overrightarrow{kOB}$ oe	Allow without brackets or arrows	
		(iii)	$\begin{pmatrix} 4 \\ 0 \end{pmatrix} - k \begin{pmatrix} 5 \\ 2 \end{pmatrix} \text{oe}$	1	B1f	or $-k\overrightarrow{OB} + \overrightarrow{OC}$ oe		
	(c)	$-\binom{1}{2}+k\binom{5}{2}=\binom{4}{0}-k\binom{5}{2}$	k = 1/2	2	M1	or $-1 + 5k = 4 - 5k$ or $-2 + 2k = -2k$ No wking $k = 0.5$:	ft(b) for M1 only	
		ое	N = 72	-		10 wking, k = 0.5.		
	(d)					No marks unless (c)	2 mks	
			$k = \frac{1}{2} \Rightarrow X$ is midpt of <i>OB</i>		B1	$ k = \frac{1}{2} \Rightarrow X \text{ is midp}$	t of <i>OB</i> & <i>AC</i> "	
						or " $k = \frac{1}{2} \Rightarrow X$ is m	idpt of //m":B1	

	$\overrightarrow{AX} = \overrightarrow{XC} \Rightarrow X$ is midpt of AC	2	B1	Allow without arrows
				Total 8 marks

15.	(a)	$x = kt^2$ or 19.6 = $k \ge 2^2$			M1	oe
		<i>k</i> = 4.9			A1	
			$x = 4.9t^2$ oe	3	A1	Allow $x \alpha 4.9t^2$ for A1
	(b)	3 ² x 4.9			M1	
			x = 44.1	2	A1f	Follow her (a) if of form kt^2
	(C)	$10 = 4.9t^2$			M1	
		<i>t</i> ² = 10 / 4.9 or 2.04			M1	Follow her (a) if of form kt^2
			1.43 or 1.4 with wking	3	A1	cao
						Total 8 marks

16.	$ \begin{array}{c} \frac{5}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} & \text{oe} \\ \times 3 \\ \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} & \text{oe} \end{array} $	$^{2}/_{27}$ or $^{16}/_{216}$ or 0.074	4	M1 M1 M1 A1	or 15x ¹ / ₆ x ¹ / ₆ x ¹ / ₆ : M2 or 16x ¹ / ₆ x ¹ / ₆ x ¹ / ₆ : M3	Dep on $1 - :$ $\binom{5}{6}^{2} x^{1}/_{6}$ x 3 $\binom{5}{6}^{3}$
						Total 4 marks

17.	$x^{2} + (2x + 1)^{2} = 13$ $x^{2} + 4x^{2} + 2x + 2x + 1 = 13$ $(5x^{2} + 4x - 12 = 0)$ (5x - 6)(x + 2) = 0			M1 M1	or further simplified condone without "= 0"	Follow similar scheme for subst for <i>x</i>
	or $x = \frac{-4 \pm \sqrt{(4^2 - 4x5x(-12))}}{2x^5}$			M1	oe must be correct	
	x = -2 and $x = 1.2$			Δ1		
	Subst two values of x into eqn			M1	dep M2 For incorr x must s	ee wking
		x = -2 & $y = -3$				5
		<i>x</i> = 1.2 & <i>y</i> = 3.4	6	A1	paired, eg by alignment or	coords
					T & I: 6 mks	s or 0 mks
					То	tal 6 marks

18.	Attempt differentiate once $-20t^{-2}$ or $-20/t^2$	$40t^{-3}$ or $40/t^{3}$	3	M1 A1 A1	NB 20/ t^2 check whether attempt diff
					Total 3 marks
					PAPER TOTAL 100 MARKS

Centre No.				Surname	Initial(s)
Candida	te No.			Signature	

Paper Reference(s)	Exam	iner's us	e only
4400/311			
London Examinations IGCSE	Team L	eader's u	ise only
Mathematics			
Mathematics			_
Paper 3H		Page Number	Leave Blank
Higher Tier		3	
Monday 6 November 2006 – Morning		5	
Time: 2 hours		6	
		7	
Materials required for examination Items included with question papers		8	
Ruler graduated in centimetres and Nil		9	
pen, HB pencil, eraser, calculator. Tracing paper may be used.			
Instructions to Candidates		12	
In the boxes above, write your centre number, candidate number, your surname, initial(s) and	_	13	
The paper reference is shown at the top of this page. Check that you have the correct question paper	r.	14	
Answer ALL the questions in the spaces provided in this question paper. Show all the steps in any calculations.		15	
		16	
There are 24 pages in this question paper. All blank pages are indicated.		17	
The total mark for this paper is 100. The marks for parts of questions are shown in round brackets: e_{g} (2)	:	18	
You may use a calculator.		19	
Advice to Candidates		20	
Write your answers neatly and in good English.		21	
		22	
		23	

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2006 Edexcel Limited.

Total

Turn over

Leave blank

Andrea's Café

Delicious cakes Only \$4.00 each

Andrea buys 100 cakes to sell in her café. She pays \$1.80 for each cake.

On Monday she sells 60 cakes. She sells these cakes for \$4.00 each.

3.

On Tuesday she reduces the price of each cake by $\frac{1}{5}$

She sells 35 cakes at this reduced price.

Andrea then gives away the 5 unsold cakes.

Calculate the total profit that Andrea makes on the cakes.

\$	Q3
(Total 6 marks)	

Leave blank 4. There are 5 classes in a school. (a) The pie chart shows information about the number of students in each class. The pie chart is accurately drawn. В A CD EA student from the school is chosen at random. Find the probability that this student is in class E. (2)

(b) The table s	shows information about the	ages of the stude	ents.	blank
	Age, x years	Frequency		
	$9 \leq x < 11$	30		
	$11 \leqslant x < 13$	12		
	$13 \leqslant x < 15$	18		
	$15 \leq x \leq 19$	60		
Give your	answer correct to 3 signification	ant figures.		
			years (4)	Q4
			(Total 6 marks)	
5. The number of Work out the p	workers in a factory decreas bercentage decrease in the nu	ses from 60 to 48 imber of workers.		
				Q5
			(Total 3 marks)	
				. 7

6.	Rajesh and Gudi share some money in the ratio 2:5 Rajesh receives £240		Leave blank
	Work out the amount of money that Gudi receives.		
		£	Q6
		(Total 2 marks)	
7.	Solve the inequality $9x - 2 < 5x + 4$		
			Q7
		(Total 3 marks)	

a race.			
the probability that each	of three girls wil	l win the race.	
Name	Probability		
Angela	0.5		
Beverley	0.1		
Caris	0.3		
Danielle			
obability that either Caris	or Danielle will	win the race	
boability that entier early	of Damene win	will the face.	
		(Total 3 marks)	ſ
		(
	a race. the probability that each Name Angela Beverley Caris Danielle obability that either Caris	h a race. The probability that each of three girls will Name Probability Angela 0.5 Beverley 0.1 Caris 0.3 Danielle obability that either Caris or Danielle will	a race. the probability that each of three girls will win the race. Name Probability Angela 0.5 Beverley 0.1 Caris 0.3 Danielle

Leave blank 9. *ABC* is a triangle. AB = AC = 13 cm. BC = 10 cm. *M* is the midpoint of *BC*. Angle $AMC = 90^{\circ}$. A Diagram NOT accurately drawn 13 cm 13 cm В MC-10 cm - \rightarrow \leftarrow (a) Work out the length of AM. cm (4)

11 a test	the st	tudent	s gain	ed th	ese m	arks.									
2	1	2	5	5	6	9	2	5	6	7	5	6	5	6	
a) Fin	d the i	nterqu	artile	range	e of th	iese n	narks.								
															(3)
he stu heir m	dents in arks h	n class ad a m	s <i>B</i> to nediar	ok the 1 of 7	e same and a	e test. In inte	erquar	tile r	ange	of 2					
The stud Their m	dents in arks ha ke two	n class ad a m	s <i>B</i> to nedian	ok the 1 of 7 ns bet	e same and a tween	e test. in inte	erquar narks	tile r of th	ange e two	of 2 o class	ses.				
The stud Their m (i)	dents in arks ha ke two	n class ad a m comp	s <i>B</i> too nedian pariso	ok the 1 of 7 ns bet	e same and a tween	e test. n inte	erquar narks	tile r of th	ange e two	of 2 o class	ses.				
The stud Their m (i) Ma	dents in arks ha ke two	n class ad a m comp	s <i>B</i> to nedian	ok the 1 of 7 ns bet	e same and a tween	e test. n inte	narks	tile r of th	ange e two	of 2 class	ses.				
he stud heir m b) Ma (i) (ii)	dents in arks ha ke two	n class ad a m o comp	s <i>B</i> to nedian	ok the 1 of 7 ns bet	e same and a tween	e test. in inte the n	erquar narks	tile r of th	ange e two	of 2 o class	ses.				
he stud heir m (i) (ii)	dents in arks ha ke two	n class ad a m o comp	s <i>B</i> to nedian pariso	ok the 1 of 7 ns bet	e same and a tween	e test. n inte	narks	tile r of th	ange e two	of 2 o class	ses.				
he stud heir m b) Ma (i) (ii)	dents in arks ha ke two	n class ad a m	s <i>B</i> to nedian pariso	ok the 1 of 7 ns bet	e samo and a tween	e test. in inte	narks	tile r of th	ange e two	of 2 o class	ses.		 	5 ma	
The study Their m (i) (ii)	dents in arks ha ke two	n class ad a m o comp	s <i>B</i> tonedian	ok the n of 7 ns bet	e same and a tween	e test. n inte	erquar narks	tile r of th	ange e two	of 2 o class	ses.		 	<u>5 ma</u>	
he stud heir m b) Ma (i) (ii)	dents in arks ha ke two	n class ad a m o comp	s <i>B</i> to nedian pariso:	ok the n of 7 ns bet	e same and a tween	e test. in inte	narks	tile r	ange e two	of 2 o class	ses.	(<u>5 ma</u>	 (2) urks)
he stud heir m (i) (ii)	dents in arks ha ke two	n class ad a m o comp	s <i>B</i> to nedian	ok the 1 of 7 ns bet	e same and a tween	e test. n inte	narks	tile r	ange e two	of 2	ses.	("	 <u>Fotal</u>	<u>5 ma</u>	
The study Their m (i) (ii)	dents in arks ha ke two	n class ad a m	s <i>B</i> tonedian	ok the n of 7 ns bet	e same and a tween	e test. n inte	narks	tile r	ange e two	of 2	ses.	(<u>5 ma</u>	

14. (a) For the equation $y = 5000x - 625x^2$, find $\frac{dy}{dx}$.	Leave blank
(b) Find the coordinates of the turning point on the graph of $y = 5000x - 625x^2$.	
(
(ii) Give a reason for your answer.	
(2)	
(d) A publisher has to set the price for a new book. The profit, £y, depends on the price of the book, £x, where	
$y = 5000x - 625x^2$	
(i) What price would you advise the publisher to set for the book?	
£	
(ii) Give a reason for your answer.	
(2) (Total 9 marks)	Q14

Leave blank 15. Maxicool!! The new ice cream sensation A Maxicool consists of a cone full of ice cream with a hemisphere of ice cream on top. The radius of the hemisphere is 3 cm. The radius of the base of the cone is 3 cm. The height of the cone is 10 cm. Diagram NOT accurately drawn 10 cm 3 cm Calculate the total volume of ice cream in a Maxicool. Give your answer correct to 3 significant figures. cm³ Q15 (Total 4 marks) 17

Leave blank

Statements
$$A \subset B$$
 $B \subset A$ $A \cup B = \mathcal{E}$ $A \cap B = \emptyset$ $A \cap B = A$

Choose a statement from the box that describes the relationship between sets

16.

	Leave blank
17. The function f is defined as $f(x) = \frac{x}{x-1}$.	
(a) Find the value of	
(i) f(3),	
(ii) f(-3).	
(2)	
(b) State which value(s) of x must be excluded from the domain of f.	
(1)	
(c) (i) Find ff(x). Give your answer in its most simple form.	
$\mathrm{ff}(x) = \dots$	
(ii) What does your answer to (c)(i) show about the function f?	
(4)	Q17
(Total 7 marks)	
	19
	urn ovei

$$y = x^2$$
$$y = 2x + 15$$

Leave blank

Q18

blank 19. Each student in a group plays at least one of hockey, tennis and football. 10 students play hockey only 9 play football only. 13 play tennis only. 6 play hockey and football but not tennis. 7 play hockey and tennis. 8 play football and tennis. x play all three sports. Hockey Tennis 10 х Football (a) Write down an expression, in terms of *x*, for the number of students who play hockey and tennis, but not football. (1) There are 50 students in the group. (b) Find the value of *x*. *x* = (3) Q19 (Total 4 marks) 21

Leave

	Leave blank
21. $\frac{1}{3}$ of the people in a club are men.	
The number of men in the club is <i>n</i> .	
(a) Write down an expression, in terms of n , for the number of people in the club.	
(1)	
Two of the people in the club are chosen at random.	
The probability that both these people are men is $\frac{1}{10}$	
(b) Calculate the number of people in the club.	
(5)	Q21
(Total 6 marks)	
TOTAL FOR PAPER: 100 MARKS	
END	
	23

IGC:	IGCSE Maths November 2006 - Paper SH Final Mark Scheme							
Qu	estion No.	Working	Answer	Mark	Notes			
1	а		290 ± 2	2	B2 B1 for 290 ± 5 or $360 - 70$			
	b	226 - 180		2	M1			
			046		A1 Condone omission of 0			
					Total 4 marks			

2	а	x + x + x +	x + x + x or $6x$	2	B1
		x + 7 + x + 7 + x + 7 + x + 7 or $4(x + 7)$ or $4x + 28$			B1
	bi	6x'' = 4(x + 7)''			M1
	ii	6x = 4x + 28			M1
		6x - 4x = 28 oe			M1
			14		A1 cao
					Total 6 marks

ICCCE Mathe Manager and 2007 Damage 201 Einst Marsh Cal

3	100 × 1.80 or 180		6	M1
	60 × 4.00 or 240			M1
	4.00 ÷ 5 or 0.8(0) or 3.2(0)			M1 may be part of an expression
	35 × 3.20 or 112			M1
	"240" + "112" - "180"			M1 dep on at least 2 of previous 4 M marks
		172		A1 cao
				Total 6 marks

4 a	$\frac{150 \pm 2}{360}$ oe inc $\frac{5}{12}$, 0.42, 0.416, 0.417		2	B1 B1	numerator = 150 ± 2 denominator = 360
b	10×30+12×12+14×18+17×60 or 300+144+252+1020 or 1716		4	M1	finds products $f \times x$ consistently within intervals (inc end points) & sums them
	use of at least 3 midpoints			M1	
	<u>"1716"</u> 120			M1	(dep on 1st M1) for division by Σf
		14.3		A1	Accept 14 if all M marks scored
					Total 6 marks

5	$\frac{48}{60}$ or $60 - 48$		3	M1
	80 or $\frac{"12"}{60}$			M1
		20		A1 cao
				Total 3 marks

6	$240 \times \frac{5}{2}$		2	M1
		600		A1 cao SC B1 for $240 \times \frac{2}{5}$ or 96
				Total 2 marks

7	4x < 6 or -6 < -4x		3	M1	correctly collects x terms
				M1	correctly collects constants
		x < 1.5 oe		A1	
					Total 3 marks

8	0.5 + 0.1 or $0.5 + 0.1 + 0.3or table completed with 0.1$		3	M1
	1-(0.5+0.1) or 1-(0.5+0.1+0.3) + 0.3			M1
		0.4		A1
				Total 3 marks

9 a	BM = 5 seen or implied		4	B1	
	$13^2 - 5^2$ or 144			M1	for squaring and subtracting Accept $13^2 - 10^2$ or 69
	$\sqrt{13^2-5^2}$			M1	for $\sqrt{13^2 - 5^2}$ only
		12		A1	cao
b	$\frac{1}{2}$ × 10×"12"		4	M1	for $\frac{1}{2} \times 10 \times$ their (a)
	× 4			M1	dep on first M1
	$10 \times 10 \text{ or } 100$			M1	indep
		340		A1	ft from "12"
					Total 8 marks

10	Q correct		4	B1		
	R correct			B1	ft from Q	
		Reflection		B1		ft from R if at least
		y = x		B1	Accept eg in dotted line but, if stated, equation must be correct	one transformation correct
						Total 4 marks

11 a	1 2 2 2 5 5 5 5 5 6 6 6 6 7 9		3	M1
	Attempt to find 4th (or 3 ³ / ₄ th)			M1
	& 12th (or 11 ¹ / ₄ th) values			
		4		A1 cao
bi	eg B had higher marks than A		2	B1 B0 if median for A seen and $\neq 5$
ii	eg B less spread or more consistent			B1
				Total 5 marks

12	а	Attempt to find $\frac{\text{vert}}{\text{horiz}}$ for line PQ		4	M1
		(gradient =) 2			A1 $(y=) 2x \Rightarrow M1A1$
			y = 2x - 4		B2 $\begin{array}{c} \text{ft from "2" B1 for } 2x - 4\\ \text{B1 for } y = mx - 4 \text{ where } m \neq 2 \end{array}$
	b	Line through (0, 1)		3	M1
		Attempts grad $-\frac{1}{2}$ or correctly finds			M1
		coordinates of another point			
			Correct line		A1 Passes within 1mm of $(-2, 2)$ and $(2, 0)$
					Total 7 marks

13 a	1 8	1	B1	
b	$\frac{3}{7}$	1	B1	Accept equivalent
c	<u>9</u> 64	1	B1	fractions
				Total 3 marks

14	a		5000 -1250x	2	B2	B1 for 5000 B1 for -1250x
	b	5000 - 1250x = 0		3	M1	
		x = 4			M1	if at least B1 scored
			4 10 000		A1	and a 1s linear
	ci		max	2	B1	independent
	ii	coeff of $x^2 < 0$ or $\frac{dy}{dx} > 0$ for x value < 4 and $\frac{dy}{dx} > 0$ for x value > 4 or y < 10 000 for x value < 4 and for x value > 4 or $\frac{d^2y}{dx^2} = -1250 < 0$			B1	
	di		4	2	B1	ft from b if at least 1 scored
	ii		max profit oe		B1	Accept eg largest profit
						Total 9 marks

15	$\frac{4}{3}\pi\times3^3\div2\ +\ \frac{1}{3}\pi\times3^2\times10$		4	M1	for $\frac{4}{3}\pi \times 3^3 \div 2$ or value rounding to 56.5 or 56.6
				M1	for $\frac{1}{3}\pi \times 3^2 \times 10$ or value rounding to 94.2 or 94.3
				M1	for sum (dep on first two M marks)
		151		A1	for 151 or better (150.796) ($3.14 \rightarrow 56.52 + 94.2 = 150.72$)
					Total 4 marks

cao	B1	2	$B \subset A$	16 i
cao	B1		$A \cap B = \emptyset$	ii
Total 2 marks				

17 ai		$1\frac{1}{2}$ oe	2	B1		
ii		$\frac{3}{4}$ oe		B1 I	Don't accept $\frac{-3}{-4}$	
b		1	1	B1 c	cao	
ci	$\frac{\frac{x}{x-1}}{\frac{x}{x-1}-1}$		4	M1		
	$\frac{\frac{x}{x-1}}{\frac{x-(x-1)}{x-1}} \text{or } \frac{x}{x-(x-1)} \text{oe}$			M1		SC B1 for ff(x) evaluated correctly for two values of x and an
		X		A1 c	cao	answer of x
ii	eg f is its own	inverse, $f^{-1} = f$		B1 c	dep on correct ci	
						Total 7 marks

18	$x^2 = 2x + 15$		5	$M1 \qquad \left(\frac{y-15}{2}\right)^2 = y$
	$x^2 - 2x - 15 = 0$			M1 $y^2 - 34y + 225 = 0$
	$(x+3)(x-5) = 0 \ \mathbf{x} = \frac{2 \pm 8}{2}$			M1 $(y-25)(y-9) = 0$
	x = -3 or x = 5			A1 $y = 9 \text{ or } y = 25$
		-3, 9 and 5,25		A1
				Total 5 marks

19	a		7 – x	1	B1
	b	8 - x seen or 9, 13, 6 marked correctly on diagram or $50 - (10 + 9 + 13 + 6) = 50 - 38 = 12$ and $8 + 7$ = 15		3	M1
		10+13+9+6+(7-x)+(8-x)+x=50 oe inc $7-x+8-x+x=12$ or $15-12$			M1 equation must be correct
			3		A1
					Total 3 marks

20 a		1:√ <i>k</i>	1	B1 Accept \sqrt{k}
b	$\sqrt{2}$ or $\sqrt{\frac{1}{2}}$ seen		2	M1
		7.1		A1 for 7.1 or better (7.071) Accept $\sqrt{50}$
				Total 3 marks

21	a		3n oe	1	B1	Accept eg n + 2n
	b	n – 1, 3n – 1 seen		5	B2	B1 for each
		$\frac{1}{3} \times \frac{n-1}{3n-1} = \frac{1}{10} \text{ oe inc } \frac{n}{3n} \times \frac{n-1}{3n-1} = \frac{1}{10}$			M1	for correct equation
		10(n-1) = 3(3n-1) oe inc $10n(n-1) = 3n(3n-1)$			M1	for correctly removing fractions
		(n = 7)	21		A1	cao
						Total 6 marks
						Total 100 marks

Centre No.				Surname	Initial(s)
Candida	ite No.			Signature	

Paper Reference(s)	Examiner	's use	only
4400/4H			
London Examinations IGCSE	Team Leade	r's u	se only
Mathematics			
Paper 4H	Pa	ige nber	Leave Blank
Higher Tier		3	
Wadnasday 8 November 2006 Morning	4	1	
wednesday 8 November 2000 – Morning	4	5	
Time: 2 hours	6	5	
	7	7	
Materials required for examinationItems included with question papersRuler graduated in centimetres andNil	8	3	
millimetres, protractor, compasses, pen HB pencil eraser calculator	ç)	
Tracing paper may be used.	1	0	
	1	1	
Instructions to Candidates	1	2	
In the boxes above, write your centre number, candidate number, your surname, initial(s) and	1	3	
Signature. The paper reference is shown at the top of this page. Check that you have the correct question paper	r. 1	4	
Answer ALL the questions in the spaces provided in this question paper. Show all the steps in any calculations.	1	5	
	1	6	
Information for Candidates There are 20 pages in this question paper. All blank pages are indicated.	- 1	7	
The total mark for this paper is 100. The marks for parts of questions are shown in round brackets: e.g. (2) .	: 1	8	
You may use a calculator.	1	9	
Advice to Candidates	2	0	
Write your answers neatly and in good English.			
		tal	
	10	mi	

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2006 Edexcel Limited.

Turn over

Answer ALL TWENTY-FIVE questions.		Leave blank
Write your answers in the spaces provided.		
Vou must write down all stages in your working		
Tou must write down an stages in your working.		
1. Work out the value of $\frac{6.46}{1.8+1.6}$		
		21
(Total 2 marks)	
2. (a) Expand $3(2t+5)$		
	.)	
(b) Expand $y(y^2 - 3y)$		
	· ;)	
(c) Expand and simplify $(x + 3)(x + 7)$		
	· ;)	
(d) Simplify $p^4q^2 \times p^3q^6$		
(2	<i>(</i>)	22
(Total 7 marks)	J
		3
I INNIININININININININININININININININI	Turi	n over

 The total of Kim's age and Pablo's age is 45 years. The ratio of Kim's age to Pablo's age is 1:4 	Leave blank
Work out Kim's age.	
years	Q3
(Total 2 marks)	
4. Here is a pattern of shapes made from centimetre squares.	
Shape Shape Shape	
number 1 number 2 number 3	
This rule can be used to find the perimeter of a shape in this pattern.	
Add 1 to the Shape number and then multiply your answer by 2	
<i>P</i> cm is the perimeter of Shape number <i>n</i> .	
(a) Write down a formula for P in terms of n .	
(3)	
(b) Make <i>n</i> the subject of the formula in part (a).	
$n = \dots$	
(3)	Q4
(Total 6 marks)	

5.	Bridget flew from the UK to Dubai.	Leave blank
	Her flight from the UK to Dubai covered a distance of 5456 km. The flight time was 7 hours 45 minutes.	
	Work out the average speed of the flight.	
	1 4	
	(Total 3 marks)	Q5
6.	$\mathcal{E} = \{$ even numbers less than 19 $\}$	
	$M = \{ \text{multiples of 3} \}$ $F = \{ \text{factors of 12} \}$	
	(a) (i) Explain why it is not true that $9 \in M$.	
	(II) List the members of M.	
	(2)	
	(b) List the members of $M \cap F$.	
	(2)	Q6
	(Total 4 marks)	
		5 Jurn ovor
	N 2 4 6 9 2 A 0 5 2 0	

	Leave
7. $9.4 \text{ cm} \rightarrow 1$	
Diagram accuratel 8.3 cm	NOT y drawn
A solid cylinder has a diameter of 9.4 cm and a height of 8.3 cm.	
Work out the volume of the cylinder. Give your answer correct to 3 significant figures.	
	cm ³ Q7
(Tota	l 3 marks)
8. $y = 4x - 1$	
Work out the value of x when $y = -7$	
$x = \dots$	
(Tota	l 2 marks)

			Leave
9	9. There are 48 beads in a bag.		
	Some of the beads are red and the rest of the beads are blue. Shan is going to take a bead at random from the bag.		
	The probability that she will take a red bead is $\frac{3}{2}$		
	(a) Work out the number of red heads in the bag		
	(a) work out the number of red beads in the bag.		
		(2)	
	Shan adds some red beads to the 48 beads in the bag.		
	The probability that she will take a red bead is now $\frac{1}{2}$		
	(b) Work out the number of red beads she adds.		
		(2)	Q9
		(Total 4 marks)	
	10. Express 225 as the product of powers of its prime factors.		
			010
		(Total 3 marks)	
			7
		Т	`urn over

12 Solve the simultaneous equations		Leave blank
12. Solve the simultaneous equations $6n + 5n = 5$		
6x + 5y - 5		
3x - 10y = 15		
	<i>x</i> =	
	<i>v</i> =	Q12
	(Total 3 marks)	
13 (a) Write the number 78 000 000 in standard form	(100010 100010)	
13. (a) write the number 78 000 000 in standard form.		
	(1)	
(b) Write 4×10^{-3} as an ordinary number.		
3×10^{-2}	(1)	
(c) Work out the value of $\frac{3 \times 10^{9}}{8 \times 10^{9}}$		
Give your answer in standard form.		
	(1)	Q13
	(Total 3 marks)	
		9
	Т	irn over

Leave blank

16. The grouped frequency table gives information about the time spent on the Internet last week by each of 80 students.

Time (<i>t</i> hours)	Frequency
$0 \le t \le 5$	28
$5 < t \le 10$	22
$10 \le t \le 15$	14
$15 \le t \le 20$	10
$20 < t \le 25$	6

(a) Complete the cumulative frequency table.

Time (t hours)	Cumulative frequency
$0 \le t \le 5$	
$0 \le t \le 10$	
$0 \le t \le 15$	
$0 \le t \le 20$	
$0 \le t \le 25$	

(b) On the grid, draw the cumulative frequency graph for your table.

N 2 4 6 9 2 A 0 1

2 2 0

(1)

18. (a) Complete the table of values for $y = x^2 - \frac{3}{x}$

x	0.5	1	1.5	2	3	4	5
у	-5.75	-2					24.4

(2)

Leave blank

(b) On the grid, draw the graph of
$$y = x^2 - \frac{3}{x}$$
 for $0.5 \le x \le 5$

(2)

(c) Use your graph to find an estimate for a solution of the equation	Leave blank
$x^2 - \frac{3}{x} = 0$	
$x = \dots $	
(d) Draw a suitable straight line on your graph to find an estimate for a solution of the equation	
$x^2 - 2x - \frac{3}{x} = 0$	
$x = \dots $	Q18
(Total 7 marks) 19. Convert the recurring decimal 0.23 to a fraction.	
	Q19
(Total 2 marks)	
	15 Furn ove i

20. D B Diagram NOT accurately drawn	Leave blank
A, B, C and D are points on the circumference of a circle. AB is a diameter of the circle. Angle $ADC = 119^{\circ}$.	
(a) (i) Work out the size of angle <i>ABC</i> .	
٥	
(ii) Give a reason for your answer.	
(2)	
(b) Work out the size of angle <i>BAC</i> .	
0	
(2)	Q20
(Total 4 marks)	

	Leave
22. Younis spins a biased coin twice.	Utalik
The probability that it will come down heads both times is 0.36	
Calculate the probability that it will come down tails both times.	
	Q22
(T-4-1	2
(Iotal	3 marks)
23. Simplify fully $\frac{2x^2 - 5x - 12}{1 + 2x^2 - 2x^2}$	
$4x^2 - 9$	
	Q23
(Total	2 marks)
(10ta)	5 marks)

IGCSE November 2006 - Paper 4H Final Mark Scheme							
Question No.	Working	Answer	Mark		Notes		
1	$\frac{6.46}{3.4}$	1.9	2	M1 A1	for 3.4 cao		
					Total 2 marks		

2	a		6 <i>t</i> +15	1	B1	cao
	b		$y^3 - 3y^2$	2	B2	B1 for y^3 , B1 for $-3y^2$
	c	$x^{2} + 7x + 3x + 21$	$x^{2} + 10x + 21$	2	M1 A1	Condone 1 error
	d		p^7q^8	2	B2	B1 for p^7 , B1 for q^8 . Allow $p^7 x q^8$
						Total 7 marks

3	$\frac{45}{1+4}$	9	2	M1 A1	36 or 9:36 M1A0 cao
					Total 2 marks

4	a				B3	for $P = 2(n+1)$) oe (a&b) Ignore units
						B2 for $2(n+1)$	oe or $n = \frac{P}{2} - 1$ oe
						B2 for $P = 2n$	+1 oe or $P = n + 1 \times 2$ oe
						B1 for $P = any$	f(n) (not P = n)
			P = 2(n+1)	3		B1 for $2n + 1$ of B0 for muddle of	e or $n+1 \times 2$ oe eg $n+1 = x 2 = P$
	b	P = 2n + 2			M1	2n+2 seen	or M2 for
		2n = P - 2	$\frac{P-2}{2}$ or $\frac{P}{2}$ - 1	3	M1 A1		$\frac{P}{2} = n+1 \text{or } \mathbf{P} - 2 \div 2$
						SC ft from $P =$	2n+1 or $2n+1$ only
						M1 for $2n = P$	-1 or P - 1 ÷ 2
						A1 ft for $\frac{P-1}{2}$	oe
							Total 6 marks

5	$\frac{5456}{7.75}$			M1	for $\frac{5456}{\text{time}}$ or 732 seen
				B1	for 7.75 or 465 ifx 60 or "km/m"
		704	3	A1	cao
					Total 3 marks

6 ai	eg "9 is not a member of \mathcal{E} ", "It is not an even number" " \mathcal{E} is only even nos", "9 is odd"		1	B1	for either interpreting statement or for giving a reason
ii		6, 12, 18	1	B1	Condone omission of brackets
b		6, 12	2	B2	B1 for 6 or 3, 6, 12
					Total 4 marks

7	$\pi \times 4.7^2 \times 8.3$			M2	for $\pi \times 4.7^2 \times 8.3$
					M1 for $\pi \times 9.4^2 \times 8.3$ or 2303 - 2305
		576	3	A1	for 575.7-576.1
					Total 3 marks

8	-7 = 4x - 1			M1	for substituting correctly
		$-1\frac{1}{2}$ oe	2	A1	
					Total 2 marks

9	а	$48 \times \frac{3}{8}$			M1	
			18	2	A1	cao ans $^{18}/_{48}$: M1A0
	b	eg 48 - 18 - 18, $x + 48 = 2(x + 18)$			M1	
			12	2	A1f	ft from "18"
						Total 4 marks

10	eg	3	225			M2	for full systematic method of at least 3
		3	75				divisions by prime numbers oe
		5	25				(factor trees)
			5				Condone 1 error
							Or for $3 \times 3 \times 5 \times 5$ or $3, 3, 5, 5$
							M1 for 225 written as correct product with only one non-prime
				$3^2 \times 5^2$	3	A1	
							Total 3 marks

11 a	eg enlargement, (scale factor) 3, (centre) (1,2)			B3	B1 for enlargement	Not single trans: B0B0B0
			3		B1 for 3, B1 for (1,2)	
b		Correct triangle	2	B2	B1 for 1 to the left B1 for 3 up	
						Total 5 marks

12	12x + 10y = 10	6x - 20y = 30			M1	Correctly equating coefficients of x or y or rearranging to $x =$ or $y =$
	(15x = 25)	(25 <i>y</i> = -25)				
			$x = 1\frac{2}{3}$ (or 1.7 or better),		A1	Condone 1.66
			y = -1	3	A1	cao
						Total 3 marks

13 a	7.8×10^7	1	B1	cao
b	0.004 oe	1	B1	cao
с	3.75×10^{-12}	1	B1	
				Total 3 marks

14 a	$\tan \angle LMN = \frac{9.3}{5.4}$			M1	sinLMN = $\frac{9.3}{\sqrt{(9.3^2 + 5.4^2)}}$ or cos etc M1A1
	^{9.3} / _{5.4} or 1.722			A1	
		59.9	3	A1	for 59.85-59.9
bi		5.45	1	B1	Accept 5.449, 5.4499
ii		5.35	1	B1	cao
с	<u>9.35</u> "5.35"			M1	
		1.74766	2	A1	for 1.74 or 1.75 or better
					Total 7 marks

15	$\frac{180 \times (10-2)}{10} \text{ or } 180 - \frac{360}{10} = \frac{360}{1$	10		M1	
	144 36			A1	
	180 - [360 - (60 + 144)] or 24 60 - 36 (= 24)			M1	360 - 204 = 156
	<u>360</u> "24"			M1	180 x (n-2)/ n = 156 or 180 – 360/n = 156 or 2340/15 = 156
		15	5	A1	cao
					Total 5 marks

16	а		28, 50, 64, 74, 80	1	B1	cao
	b		Points		B1	In (b) incr'ing y's nec'y. Not blocks end pts $\pm \frac{1}{2}$ square ft from sensible table condone one error
			Curve or line segments	2	B1	dep end pts or midptsthro' pts $\pm \frac{1}{2}$ square;ignore x < 5
	c	cf for time of 17h found from graph			M1	In (c) incr'ing cf graph essential eg line, mark on graph
			~12	2	A1f	12 or consistent with curve
						Total 5 marks
17		$(\frac{67}{360} \text{ or } 0.186) \text{ x}$			M1	or $\div ({}^{360}/_{67} \text{ or } 5.37)$
		$\frac{67}{360} \times \pi \times 8.2^2$			M1	or $\pi \ge 8.2^2 \div \frac{360}{67}$
			39.3	3	A1	for 39.2 - 39.32
						Total 3 marks
18	а		0.25, 2.5, 8, 15.25	2	B2	Accept rounding or truncating B1 for 2 or 3 correct
	b		Points		B1f	Allow $\pm \frac{1}{2}$ square Condone 1 error or omission ft if at least B1 in (a)
			Curve	2	B1f	ft if at least B1 in (a)
	c		1.4 – 1.47	1	B1	
	d	$x^2 - \frac{3}{x} = 2x$ or indication of $y = 2x$			M1	indication may be mark or line on graph Must see $2x$ or indic'n of line $y = 2x$
			~2.5	2	A1	ft if at least B1 in (b)
						Total 7 marks

19	100x = 23.2323			M1	
		$\frac{23}{99}$	2	A1	
					Total 2 marks

20	ai		61	1	B1	cao
	ii	opp angles of a cyclic quad (add to 180	0° or are suppl)	1	B1	
	b	90 – "61"			M1	$\angle ACB = 90^{\circ}$ stated or indicated on diagram
			29	2	A1f	
						Total 4 marks

21 a	128, 72	2	B2	B1 for 128 cao B1 for 72 cao
b	bar correct	1	B1	34 little squares high
				Total 3 marks

22	$\sqrt{0.36}$ or 0.6			M1	
	$(1 - "0.6") \times (1 - "0.6")$ or 0.4×0.4			M1	dep
		0.16	3	A1	for 0.16 oe
					Total 3 marks

23	$\frac{(2x+3)(x-4)}{(2x+3)(2x-3)}$			M1 M1	for $(2x+3)(x-4)$ for $(2x+3)(2x-3)$
		$\frac{x-4}{2x-3}$	3	A1	
					Total 3 marks

24	eg $\frac{8.6}{\sin 75^{\circ}} = \frac{"a"}{\sin 48^{\circ}}$ or $\frac{"b"}{\sin 57^{\circ}}$			M1	
	$\frac{8.6\sin 48^{\circ}}{\sin 75^{\circ}} \text{ or } 6.61() \text{ or } \frac{8.6\sin 57^{\circ}}{\sin 75^{\circ}} \text{ or } 7.46()$			A1	
	$\frac{1}{2} \times 8.6 \times 6.616 \times \sin 57^{\circ}$ or $\frac{1}{2} \times 8.6 \times 7.467 \times \sin 48^{\circ}$			M1	dep M1 or $\frac{1}{2}$ x "6.616" x "7.467" x sin75°
		23.9	4	A1	
					Total 4 marks

25 a				B2	two of $(5-x)$, $(6-x)$, $(x + 4)$ seen or equiv, eg $(10 - x - 4)$ B1 for one of these
23	$(5-x)^{2} + (6-x)^{2} = (x+4)^{2}$ 25-10x + x ² + 36-12x + x ² = x ² + 8x	x+16	4	B1 B1	correct equn not expanded correct equn expanded
b	$\frac{30\pm\sqrt{30^2-4\times45}}{2}$		3	M1	Allow -30^2
	$\frac{30 \pm \sqrt{720}}{2}$ or 28.4 & 1.584			A1	
		1.58		A1	
					Total 4 marks

Centre No.				Surname	Initial(s)
Candidate No.				Signature	

Paper Reference(s)	Examiner's use	e only
4400/311		
London Examinations IGCSE	am Leader's u	ise only
Mathematics		
Paper 3H	Page Number	Leave Blank
Higher Tier	3	
	4	
Thursday T / May 2007 – Morning	5	
Time: 2 hours	6	
	7	
Materials required for examination Rular graduated in continuation on the second seco	8	
millimetres, protractor, compasses,	9	
Tracing paper may be used.	10	
	11	
Instructions to Candidates	12	
In the boxes above, write your centre number, candidate number, your surname, initial(s) and	13	
signature. Check that you have the correct question paper.	14	
Answer ALL the questions in the spaces provided in this question paper. You must NOT write on the formulae page. Anything you write on the formulae page will gain	15	
NO credit.	16	
If you need more space to complete your answer to any question, use additional answer sneets.	17	
Information for Candidates	18	
The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 19 questions in this question paper. The total mark for this paper is 100.	10	
There are 20 pages in this question paper. Any blank pages are indicated. You may use a calculator	20	
	20	
Advice to Candidates		
Write your answers neatly and in good English.		
	Total	

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited.

Turn over

Answer ALL NINETEEN questions		Leave blank
Answer ALL MINE I EEN questions.		
Write your answers in the spaces provided.		
You must write down all stages in your working.		
1. (a) Use your calculator to work out the value of		
$\frac{(3.7+4.6)^2}{2.8+6.3}$		
Write down all the figures on your calculator display.		
	(2)	
(b) Give your answer to part (a) correct to 2 decimal places.		
	(1)	Q1
	(Total 3 marks)	
2. (a) Work out the value of $x^2 - 5x$ when $x = -3$		
	(2)	
(b) Factorise $x^2 - 5x$		
	(2)	Q2
	(Total 4 marks)	
		3
	Тι	ırn over

3. Hajra counted the numbers of sweets in 20 packets. The table shows information about her results. Number of sweets Frequency 3 46 47 6 3 48 5 49 2 50 51 1 Work out the mean number of sweets in the 20 packets. Q3 (Total 3 marks)

Leave blank

7.	At	unnel is 38.5 km long.	Leave blank
	(a)	A train travels the 38.5 km in 21 minutes.	
		Work out the average speed of the train. Give your answer in km/h.	
		km/h	
		(3)	
	(b)	To make the tunnel, a cylindrical hole 38.5 km long was drilled. The radius of the cylindrical hole was 4.19 m.	
		Work out the volume of earth, in m^3 , which was removed to make the hole. Give your answer correct to 3 significant figures.	
			07
		(Total 6 marks)	
			7
			rn over

8.	(a)	Shri invested 4500 dollars. After one year, he received 270 dollars interest.	Leave blank
		Work out 270 as a percentage of 4500	
	(b)	Kareena invested an amount of money at an interest rate of 4.5% per year. After one year, she received 117 dollars interest. Work out the amount of money Kareena invested.	
		dollars	
		(2)	
	(c)	Ravi invested an amount of money at an interest rate of 4% per year. At the end of one year, interest was added to his account and the total amount in his account was then 3328 dollars. Work out the amount of money Ravi invested.	
		dollars (3)	Q8
		(Total 7 marks)	
0			

10. Here are five shapes	Leave blank
Four of the shapes are squares and one of the shapes is a circle. One square is black. Three squares are white. The circle is black. The five shapes are put in a bag.	
(a) Jasmine takes a shape at random from the bag 150 times.She replaces the shape each time.	
Work out an estimate for the number of times she will take a white square.	
(3)	
(b) Alec takes a shape at random from the bag and does not replace it. Bashir then takes a shape at random from the bag.	
Work out the probability that	
(i) they both take a square,	
(ii) they take shapes of the same colour.	
(5)	Q10
(Total 8 marks)	

	Leave blank
11. <i>B</i>	
$C = \frac{6.9 \text{ cm}}{5.7 \text{ cm}} A$ Diagram NOT accurately drawn	
A and B are points on a circle, centre O. The lines CA and CB are tangents to the circle. CA = 5.7 cm. CO = 6.9 cm.	
(a) Give a reason why angle $CAO = 90^{\circ}$.	
(1) (b) Calculate the perimeter of the kite $CAOB$	
Give your answer correct to 3 significant figures.	
cm	
	Q11
(Total 6 marks)	

Leave blank

12. The grouped frequency table gives information about the weights of 60 cows.

Weight (w kg)	Frequency
$100 < w \leqslant 200$	10
$200 < w \leqslant 300$	16
$300 < w \leqslant 400$	15
$400 < w \leqslant 500$	9
$500 < w \leqslant 600$	6
$600 < w \leqslant 700$	4

(a) Complete the cumulative frequency table.

Weight (w kg)	Cumulative frequency
$100 < w \leqslant 200$	
$100 < w \leqslant 300$	
$100 < w \leqslant 400$	
$100 < w \leqslant 500$	
$100 < w \leqslant 600$	
$100 < w \leqslant 700$	

14. (a) Make <i>r</i> the subject of the formula $A = \pi r^2$, where <i>r</i> is positive.	Leave blank
$r = \dots $	
The area of a circle is 14 cm ² , correct to 2 significant figures.	
(b) (i) Work out the lower bound for the radius of the circle.Write down all the figures on your calculator display.	
cm	
(ii) Give the radius of the circle to an appropriate degree of accuracy. You must show working to explain how you obtained your answer.	
cm (4)	Q14
(Total 6 marks)	
	15
	Turn over

	Leave blank
17. A curve has equation $y = x^2 + \frac{16}{x}$	
The curve has one turning point.	
Find $\frac{dy}{dx}$ and use your answer to find the coordinates of this turning point.	
	Q17
(Total 4 marks)	
18	

N 2 5 7 9 9 A 0 1 8 2 0

19	Leave blank
A Diagram NOT accurately drawn -2.8 cm	
A solid hemisphere A has a radius of 2.8 cm.	
(a) Calculate the total surface area of hemisphere A. Give your answer correct to 3 significant figures.	
c	m ² (3)
A larger solid hemisphere B has a volume which is 125 times the volume hemisphere A .	of
(b) Calculate the total surface area of hemisphere B. Give your answer correct to 3 significant figures.	
	.m ²
	(3) Q18
(Total 6 marl	<u>(s)</u>
PLEASE TURN OVER FOR QUESTION 19	
	19 Turn over

Leave blank

19. Solve the simultaneous equations

$$y = 3x - 1$$

$$x^2 + y^2 = 5$$

	Q19
(Total 6 marks) TOTAL FOR PAPER: 100 MARKS	
END	

4400 IGCSE Mathematics Summer 2007 Paper 3H

(2	Working	Answer	Mark		Notes
1.	(a)	68.89		2	M1	for 8.3, 68.89, 9.1 or 30.90
		9.1				
			7.5703		A1	Accept if first 5 figures correct
						Also accept $7\frac{519}{910}$, $\frac{6889}{910}$
	(b)		7.57	1	B1	ft from (a) if non-trivial ie (a) must
						have more than 2 d.p.
						Total 3 marks

2.	(a)	$(-3)^2 - 5 \times -3$		2	M1	for substn or 9 or 15 seen
			24		A1	cao
	(b)		<i>x</i> (<i>x</i> – 5)	2	B2	B1 for factors which, when expanded and simplified, give two terms, one of which is correct SC B1 for $x(5 - x)$ and for $x(x - 5x)$
						Total 4 marks

3.	46×3+47×6+48×3+49×5+50×2+51×1 or 138+282+144+245+100+51 or 960		3	M1	for finding at least 4 products and adding
	"960" ÷ 20			M1	(dep) for division by 20
		48		A1	CaO
					Total 3 marks

(ζ	Working	Answer	Mark	Notes		
4.	(a)	translation 3 squares to	b the right and 1 square down	2	B2	B1 for translation Accept translate, translated etc	
						B1 for 3 right and 1 down (accept 'across' instead of	These marks are independent but
						'to the right') or $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$	if answer
						but not (3, -1)	is not a single transformation
	(b)	rotation o	of 90° clockwise about (2, -1)	3	B3	B1 for rotation Accept rotate, rotated etc	
						B1 for 90° clockwise or −90° or 270°	
						B1 for (2, -1)	
							Total 5 marks

5.	(ai)		78	2	B1	CaO
	(ii)		56		B1	cao
	(b)	9 + 4 - <i>n</i> = 8 or 13 - <i>n</i> = 8		2	M1	Also award for 2 ⁿ = 2 ⁵ or 2 ⁵ on answer line
			5		A1	CaO
						Total 4 marks

(2 2	Working	Answer	Mark	Notes
6.	(a)	12x - 15 - 8x - 4		2	M1 for at least 3 terms correct inc signs
			4 <i>x</i> – 19		A1 cao
	(b)	$y^2 + 3y + 8y + 24$		2	M1 for 3 terms correct or y^2 + 11y seen
			$y^2 + 11y + 24$		A1
	(c)		$5p^{3}+4p$	2	B2 cao B1 for either $5p^3$ or for $+4p$
					Total 6 marks

7.	(a)	$\frac{38.5}{21} \times 60 \text{ or } \frac{21}{60} = 0.35; \frac{38.5}{0.35}$		3	M1	for $\frac{38.5}{21}$ or 1.83 or better or $\frac{38.5}{0.21}$ or 183.3 or better or $\frac{21}{60}$ or 0.35
					M1	for '1.8333' ×60 or $\frac{38.5}{'0.35'}$
			110	3	A1	CaO
	(b)	$\pi \times 4.19^2 \times 38500$			M2	M1 for $\pi \times$ (no with digits 419) ² × no with digits 385
			2 120 000		A1	for 2 120 000 or for answer which rounds to 2 120 000
						Total 6 marks

(2	Working	Answer	Mark	Notes
8.	(a)	<u>270</u> ×100		2	M1 for $\frac{270}{4500}$ or 0.06 or $\frac{4770}{4500}$ or 1.06
		4500			4300 4300
			0		
	(b)	$117 \times \frac{100}{4.5}$		2	$ \begin{array}{c} M1 \\ \text{for } \frac{117}{4.5} \text{ or } 26 \text{ seen} \end{array} $
			2600		A1 cao
	(C)	$\frac{3328}{1.04}$ or $3328 \times \frac{100}{104}$		3	M2 for $\frac{3328}{1.04}$ or $3328 \times \frac{100}{104}$
					M1 for $\frac{3328}{104}$, 104% = 3328 or 32 seen
			3200		A1 cao
					Total 7 marks

(Z	Working	Answer	Mark	Notes
9.	(a)	5x - 2x = 7 + 4		2	M1 for correct rearrangement
			$\frac{11}{3}$, $3\frac{2}{3}$ oe		A1 Also accept 2 or more d.p. rounded or truncated e.g. 3.66, 3.67
	(b)	$4 \times \frac{7 - 2y}{4}$ or $7 - 2y$ = 4(2y + 3)		4	M1 for clear intention to multiply both sides by 4 or a multiple of 4 For example, award for $4 \times \frac{7 - 2y}{4} \text{ or } 7 - 2y$ $= 4 \times 2y + 3 \text{ or } 8y + 3$ or 2y + 3 × 4 or 2y + 12
		7 – 2y = 8y + 12 or simpler			M1 for correct expansion of brackets (usually 8y + 12) or for correct rearrangement of correct terms e.g. 8y + 2y = 7 - 12
		10y = -5			A1 for reduction to correct equation of form <i>ay</i> = <i>b</i>
			$-\frac{1}{2}$ oe		A1
					Total 6 marks

(ζ	Working	Answer	Mark	Notes
10.					Accept decimals in parts (a) and (b)
	(a)	$150 \times \frac{3}{5}$		3	B1 for $\frac{3}{5}$ seen
					M1 for $150 \times \frac{3}{5}$
				90	A1 cao Do not accept $\frac{90}{150}$
	(bi)	$\frac{4}{5} \times \frac{3}{4}$		5	M1 for $\frac{4}{5} \times \frac{3}{4}$ seen
			$\frac{12}{20}$ or $\frac{3}{5}$	be	A1
	(ii)	$\frac{2}{5} \times \frac{1}{4} + \frac{3}{5} \times \frac{2}{4}$			M1 for $\frac{2}{5} \times \frac{1}{4}$ or SC M1 for $\frac{2}{5} \times \frac{2}{5}$ or $\frac{3}{5} \times \frac{3}{5}$
					$\frac{3}{5} \times \frac{2}{4}$
					M1 (dep) for SC M1 (dep) for adding adding both above products
			$\frac{8}{20}$ or $\frac{2}{5}$	be	A1 for $\frac{8}{20}$ or $\frac{2}{5}$ oe
					Total 8 marks

Q		Working	Answer	Mark		Notes
11.	(a)	tangent at any point of a circle an	id the radius at that point are perpendicular	1	B1	for mention of tangent and radius or line from centre
	(b)	6.9 ² – 5.7 ² or 47.61 – 32.49 or 15.12		5	M1	for squaring and subtracting
		$\sqrt{6.9^2-5.7^2}$			M1	(dep) for square root
		3.88844			A1	for 3.89 or better
		2×5.7+2×"3.88844"			M1	for 2× 5.7 + 2ד3.888" only
			19.2		A1	for 19.2 or answer which rounds to 19.2 (19.176888)
						Total 6 marks

12.	(a)	10, 26, 41, 50, 56, 60	1	B1	Cao
	(b)	Points correct	2	B1	$\pm \frac{1}{2}$ sq ft from sensible table
		Curve or line segments		B1	ft if 4 or 5 points correct or if points are plotted consistently within each interval (inc end points) at the correct height
	(c)	Use of w = 430 on graph	2	M1	may be shown on graph or implied by 43, 44 or 45 stated
		Approx 16		A1	If M1 scored, ft from cumulative frequency graph If no method shown, ft only from correct curve
					Total 5 marks

(ຸ	Working	Answer	Mark		Notes
13.			lines	4	B3	B1 for each correct line (full or broken) Ignore additional lines
			region		B1	for correct region shaded in or out or for correct region labelled R
						Total 4 marks

14.	(a)	$r^2 = \frac{A}{\pi}$		2	M1 f	For $r^2 = \frac{A}{\pi}$ or $r^2 = A \div \pi$
			$\sqrt{\frac{A}{\pi}}$		A1 I	gnore ±
	(bi)	$\sqrt{\frac{13.5}{\pi}}$	2.07296	4	M1 f A1 f	for 13.5 seen for answer which rounds to 2.073
	(ii)	$\sqrt{\frac{14.5}{\pi}}$ or 2.14836			M1 f	For $\sqrt{\frac{14.5}{\pi}}$ or value which rounds to
					2	2.148 or 2.149 cao
			2.1		A1 C	dep on previous 3 marks in (b)
						Total 6 marks

Q		Working	Answer	Mark	Notes
15.	(ai)	$f = \frac{k}{w}$	$f = \frac{300000}{W}$	4	M1 May be implied by $1500 = \frac{k}{200}$ A1 Also award if answer is $f = \frac{k}{w}$ but
	(ii)		f w w		B2 B1 for graph with negative gradient (increasing or constant) even if it touches or crosses one or both axes e.g.
	(b)	$f = \frac{300000}{1250}$		2	M1 for substitution in $f = \frac{k}{w}$
			240		A1 ft from k
					Total 6 marks

(Q	Working	Answer	Mark	Notes
16.	(ai)		3b	3	B1
	(ii)		3b - a		B1
	(iii)	$\frac{2}{3}$ a + b or a + $\frac{1}{3}$ (3b -	a) or 3 b - $\frac{2}{3}$ (3 b - a) oe		B1
	(b)	$\frac{2}{3}a$		2	B2 for $\frac{2}{3}$ a or $\frac{2}{3}$ \overrightarrow{PQ} or $k = \frac{2}{3}$ unless clearly
		or $\frac{2}{3} \overrightarrow{PQ}$			obtained by non-vector method
		or $k = \frac{2}{3}$			or for expression in terms of a and/or b (need not be simplified) for
		or a + 1/3 (3b - a) - b			EF either correct or ft from (a)
		or $\frac{2}{3}$ a + b - b			B1 for correct vector statement with a least 3 terms which includes EF
		or (a)(iii) – b or –b + a + ¹ / _– (3b – a)			(or <i>FE</i>) in terms of capital letters and/or a , b
		or $-b + a + \frac{1}{2}(a)(ii)$			eg \overrightarrow{PQ} = \overrightarrow{PE} + \overrightarrow{EF} + \overrightarrow{FQ}
		or $2b - \frac{2}{3}(3b - a)$			$\overrightarrow{PF} = \overrightarrow{PE} + \overrightarrow{EF}$ $\mathbf{a} = \mathbf{b} + \overrightarrow{EF} + \overrightarrow{FQ}$
		or 2b - $\frac{2}{3}$ (a)(ii) oe			If an attempt is crossed out and replaced, mark all attempts, including crossed out one, and award best mark
					Total 5 marl

(ζ	Working	Answer	Marl		Notes
	1				_	
17.		$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) 2x - \frac{16}{x^2}$		4	B1 B1	for $2x$ for $\pm \frac{16}{x^2}$ or $\pm 16x^{-2}$
		$"2x \pm \frac{16}{x^2}"=0$			M1	
				(2, 12)	A1	cao For answer (2, 12) with no preceding marks scored, award B0 B0 M1 A1
						Total 4 marks
18.	(a)	$\pi \times \mathbf{2.8^2} + \frac{1}{2} \times 4\pi \times \mathbf{2.8^2}$		3	M2	M1 for each term Also award for values rounding to 24.6 and to 49.2 or 49.3
				73.9	A1	for 73.9 or for answer which rounds to 73.9
	(b)	$\sqrt[3]{125}$ or 5 seen		3	M1	
		25×73.89			M1	for 25 × (a) or for π × (2.8 × 5) ² + 2 π × (2.8 × 5) ² or for substituting r = 2.8 × 5 in the expression used in (a)
				1850	A1	for 1850 or for any value in range 1846.3 - 1847.5 ft from 25 × (a)
						Total 6 marks

Q		Working	Answer	Mark		Notes
19.		$x^2 + (3x - 1)^2 = 5$		6	M1	for correct substitution
		$x^{2} + 9x^{2} - 3x - 3x + 1 = 5$ or $x^{2} + 9x^{2} - 6x + 1 = 5$			B1	(indep) for correct expansion of $(3x - 1)^2$ even if unsimplified
		$10x^2 - 6x - 4 = 0$			B1	for correct simplification
		(5x+2)(2x-2)=0			B1	for correct factorisation
		or $(5x+2)(x-1) = 0$				
		or $(10x + 4)(x - 1) = 0$				
		or $\frac{6 \pm \sqrt{196}}{20}$ or $\frac{3 \pm \sqrt{49}}{10}$				or for correct substitution into the quadratic formula and correct evaluation of $b^2 - 4ac'$
		or $\frac{3}{10} \pm \frac{\sqrt{49}}{10}$				or for using square completion correctly as far as indicated
		$x = -\frac{2}{5}$ or $x = 1$			A1	for both values of x
			$x = -\frac{2}{5}, y = -2\frac{1}{5}$		A1	for complete, correct solutions
			x = 1, y = 2			
						Total 6 marks
						PAPER TOTAL 100 MARKS

Centre No.				Surname	Initial(s)
Candidat	te No.			Signature	

Paper Reference(s) E	xaminer's use	e only
London Examinations IGCSE	m Leader's u	ise only
Mathematics		
Paper 4H	Page Number	Leave Blank
Higher Tier	3	
	4	
Friday 18 May 2007 – Afternoon	5	
Time: 2 hours	6	
	7	
Materials required for examination Items included with question papers	8	
Ruler graduated in centimetres and Nil millimetres, protractor, compasses,	9	
pen, HB pencil, eraser, calculator. Tracing paper may be used.	10	
	11	
	12	
Instructions to Candidates	12	
signature.	13	
Check that you have the correct question paper. Answer ALL the questions in the spaces provided in this question paper.	14	
You must NOT write on the formulae page. Anything you write on the formulae page will gain	15	
NO credit. If you need more space to complete your answer to any question use additional answer sheets	16	
	17	
Information for Candidates	18	
The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 21 questions in this question paper. The total mark for this paper is 100.	10	
There are 20 pages in this question paper. Any blank pages are indicated.	19	
You may use a calculator.		
Advice to Candidates		
Write your answers neatly and in good English.		
	Total	

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited.

Turn over

Answer ALL TWENTY ONE questions		Leave blank
Answer ALL I WENTY ONE questions. Write your answers in the spaces provided		
You must write down all the stages in your working	2.	
1 The diagram shows the lengths in am of the sides of a triangle	2	
1. The diagram shows the lengths, in cm, of the sides of a triangle.		
x $(3x-5)$		
(2x+1)		
The perimeter of the triangle is 17 cm.		
(i) Use this information to write an equation in x .		
(ii) Solve your equation.		
	r =	
	·	Q1
	(Total 3 marks)	
2. Anji mixes sand and cement in the ratio 7 : 2 by weight. The total weight of the mixture is 27 kg.		
Calculate the weight of sand in the mixture.		
	kg	Q2
	(Total 3 marks)	
		3
I INNII NII INNI NII INNI NIII NIII NI	Т	urn over

3.	Solve $5(x - 4) = 35$	Leave blank
	$x = \dots$	Q3
	(Total 3 marks)	
4.	Julian has to work out $\frac{6.8 \times 47.6}{2.09}$ without using a calculator.	
	(a) Round each number in Julian's calculation to one significant figure.	
	(b) Use your rounded numbers to work out an estimate for $\frac{6.8 \times 47.6}{2.09}$ Give your answer correct to one significant figure.	
	(2)	
	(c) Without using your calculator, explain why your answer to part (b) should be larger than the exact answer.	
	(2)	Q4
	(Total 6 marks)	

Turn over

Leave blank

.....

(2)

8. A bag contains some marbles. The colour of each marble is red or blue or green or yellow.

A marble is taken at random from the bag. The table shows the probability that the marble is red or blue or green.

Colour	Probability
Red	0.1
Blue	0.2
Green	0.1
Yellow	

(a) Work out the probability that the marble is yellow.

(b) Work out the probability that the marble is blue or green.

	(2)
The probability that the marble is made of glass is 0.8	
(c) Beryl says "The probability that the marble is green or made of glass $0.1 + 0.8 = 0.9$ "	is
Is Beryl correct?	
Give a reason for your answer.	
	(2)
(Total 6 mar	ks)

13.	Here are	the n	narks	score	d in a	ı mat	hs tes	st by 1	the st	udent	s in t	wo c	lasse	s.				Le: bla
	Class A	2	13	15	16	4	6	19	10	11	4	5	15	4	16	6		
	Class B	12	11	2	5	19	14	6	6	10	14	9						
	(a) Work	c out	the ir	nterqu	artile	rang	e of t	the m	arks f	for ea	ch cl	ass.						
												C	lass .	A		•••••		
												C	lass .	В		•••••	(4)	
	(b) Use	your	answ	vers t	o give	e one	e con	nparis	son be	etwee	n the	e ma	rks o	of C	lass /	A and	d the	
	mark	s of	Class	B.														
			•••••						•••••	•••••		•••••	•••••	•••••			•••••	
		•••••	•••••	•••••					•••••	•••••		•••••					(1)	Q1
														T)	`otal :	5 ma	rks)	
11	Solve						5 <i>x</i> –	7	⊥1								· · ·	
17.	50176						x – 1		Τ1									
														•••		•••••		Q1
														(T	otal -	4 ma	rks)	
																		1;
																	Т	

		Lo
15.	There are 35 students in a group.	
	18 students play hockey.	
	12 students play both hockey and tennis.	
	15 students play neither hockey nor tennis.	
	Find the number of students who play tennis.	
	······	
	(Total 4 marks)	
16.	A triangle has sides of length 5 cm, 6 cm and 9 cm.	
	\sim	
	5 cm $6 cm$ Diagram NOT	
	x° accurately drawn	
	9 cm	
	Calculate the value of <i>x</i> .	
	Give your answer correct to 3 significant figures.	
	$\mathbf{r} =$	01
	<i>x</i> =	Q

Leave blank 17. The functions f and g are defined as follows. $\mathbf{f}(x) = \frac{1}{x+2}$ $g(x) = \sqrt{x - 1}$ (a) (i) State which value of x cannot be included in the domain of f. (ii) State which values of x cannot be included in the domain of g. (3) (b) Calculate fg(10) (3) (c) Express the inverse function g^{-1} in the form $g^{-1}(x) = \dots$ (4) Q17 (Total 10 marks) 15

18. A fair, 6-sided dice has faces numbered 1, 2, 3, 4, 5 and 6When the dice is thrown, the number facing up is the score. The dice is thrown three times.	Leave blank
(a) Calculate the probability that the total score is 18	
	(2)
(b) Calculate the probability that the score on the third throw is exactly double the t of the scores on the first two throws.	otal
	 (4) Q18 rks)

21. (a) Factorise $16x^2 - 1$	Leave
(1)	
(b) Hence express as the product of its prime factors	
(i) 1599	
('') 1 500 · · 106	
(11) $1.399 \times 10^{\circ}$	
(5)	Q21
(Total 6 marks)	
TOTAL FOR PAPER: 100 MARKS	
END	

4400 IGCSE Mathematics Summer 2007 Paper 4H

Q	Working	Answer	Mark	Notes
1. (i)		x + 2x + 1 + 3x - 5 = 17	1	B1 B1 oe eg $6x - 4 = 17$ ISW not '= p'
(ii)	6x = 21 or 6x - 21 = 0 etc			M1 ft (i) if $6x = c$
		x = 3.5 oe eg ²¹ / ₆	2	A1
				Total 3 marks

2.	9 seen			B1
	7/9 × 27 or 7×27/9 oe			M1 dep B1
		21	3	A1 21 seen, & ans = 3 B1M1A0
				Total 3 marks

3.	5x - 20 = 35			M1
	5x = 55			M1 or M2 for $x - 4 = 7$
		11	3	A1
				Total 3 marks

	Q	Working	Answer	Mark	Notes
4.	(a) (b)	<u>7 × 50</u> or 7, 50, 2 2 175		2	B1 for 7 and 2 B1 for 50 M1 (6or7) × (48or50) 2 or 3 correctly eval'd eg 168
	(c)		200 or 100 Num incr or 6.8 & 47.6 incr denom decr or 2.09 decr (b) rnded up (not rnd	2	A1 A1f If no wking: ft (a) B2 any two of these B1 B2 any two of these
			to 1 st) or '175' rnded to 200	2	B1 B1 any one of these Ignore other
					Total 6 marks
5.	(a)	$(2+3)/2 \times 6 \text{ or } 2 \times 6 + \frac{1}{2} \times 6 \times 1 \text{ oe}$	15	2	M1 A1

						Total 5 marks
			750	3	A1	
(b	b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			M1 M1	or 0.75 ft '15' for M1M1 only
			15	2	A1	
J . (0	u)				1 100	
Q	Working	Answer	Mark	Notes		
----	---------------------------------------	------------------------------------	------	--		
6.	x + 3 = 7x $7y = 7x + 21$			M1 $y = 7(y-3)$ $y = 7y-21$ $0 = 6x - 3$		
	(6 <i>x</i> = 3 oe) (6 <i>y</i> = 21)					
		$x = \frac{1}{2}, y = \frac{3}{2}$		A1		
			3	A1		
				Total 3 marks		

7.	(a)	tan used			M1	(sin or cos) & ($\sqrt{(4.2^2+5.1^2)}$ or (6.61) used
		$\tan x = 5.1/4.2$ or $\tan x = 1.2$ oe			M1	sinx = $5.1/\sqrt{(4.2^2+5.1^2)}$ or cosx = $4.2/\sqrt{(4.2^2+5.1^2)}$
			<i>x</i> = 50.5	3	A1	
	(b)	sin 29 = <i>AB</i> /5 or <i>c</i> /sin29 = 5/sin90			M1	$BC = 5\cos 29$
		<i>AB</i> = 5sin 29			M1	$AB = \sqrt{(52+(5\cos 29)2)}$ or $5\cos 29 \times \tan 29$
			<i>AB</i> = 2.42 cm	3	A1	
	_					Total 6 marks

8. (a) 1 - ().1 + 0	.2 + 0.1)	or 1 - 0.4	oe					M1	or 0.6 in table
								0.6	2	A1	allow in table if not contrad on line
(b) 0.2 ·	0.1	or 1 - ('(0.6' + 0.1)						M1	or 0.3 seen
								0.3	2	A1	
(c)					(Poss)	overlap o	or mut			
						excl					
						or do	oesn't wk	for B			Can't tell & (No or poss) B1
						or Y }					Correct reason only: B1
						No	or poss	or poss			Incorrect reason: B0
								yes }	2	B2	Unqualified Yes: B0
											Total 6 marks

Q	Working	Answer	Mark	Notes
9.	$ 4^2 + 6^2$ (= 52)			M1
	$\sqrt{(4^2 + 6^2)}$ or $\sqrt{52}$ or $2\sqrt{13}$			M1 M1 dep
		h = 7.21	3	A1
				Total 3 marks

10. (a)	V/H in any correct triangle attempted			M1 eg $\frac{3-1}{1-0}$ not $\frac{3}{1-1}$
	Grad = 2, may be embedded or implied			A1
				M1 B2f B1f for grad. B1 for y-int (lin
		y = 2x + 1	4	eqn)
		-		or B1f for just '2'x + 1
				No wking, ans $2x + 1$: M1A1 B1
(b)		$\mathbf{y} = -2\mathbf{x} + \mathbf{c}$	1	B1 $y = -2x \pm any$ no. (not 5) or letter
				or $v = -2x$
(c)		(0, -4)	1	B1
				Total 6 marks

11.	(a)				56	1	B1	
	(b)	x/20 = 6/12	or 4/8	oe			M1	or x/sin30 = 20/sin(180-30-56)
					10 or 10.0	2	A1	
	(C)	y/10 = 4/6	or 8/12	oe			M1	or $y = \sqrt{4^2 + 8^2 - 2 \times 4 \times 8 \times \cos 56^2}$
								or y/sin56 = 8/sin(180-30-56)
					6.6 to 6.7 incl oe	2	A1	(a)(b): ft (a) M-mks only
								Total 5 marks

Q		Working	Answer	Mark		Notes
12.	(a)	a^7 / a^2 or a × a^4 or $a^3 × a^2$			M1	
			a ⁵	2	A1	
	(b)		x ³	1	B1	
	(C)	Correctly cancel numbers or $(x + 1)$			M1	$eg^{1}/_{2}$ or 0.5 or denom = 2
						or $\frac{3(x+1)}{6}$ or $\frac{3x+3}{6}$ or $k(x+1)$ ($k \neq 1$)
			$\frac{1}{2}(x+1)$ or 0.5(x + 1)			
			or $\frac{x+1}{2}$ or $\frac{x}{2} + \frac{1}{2}$			
			or equiv	2	A1	Not ISW
						Total 5 marks

13.	(a)	Attempt arrange one set in order			M1	
		State or indicate correct 15 & 4 or14 & 6			M1	
						NB: IQR for $B = 8$, check wking
			A: 11 B: 8	4	A1	
					A1	
	(b)		A more spread	1	B1	B1f Consistent with (a). Ignore
			or gter dispersion			other.
			or less consistent than			Not: gter "range" or "difference"
			В			or
						"more constant" or "gter IQR"
						or "gter variance"
						Total 5 marks

Q	Working	Answer	Mark	Notes
14.	$5x - 7 = x^2 - 1$ or $5x - 7 = (x - 1)(x + 1)$			M1 condone $5x - 7 = x - 1 \times x + 1$
	$x^2 - 5x + 6 = 0$			M1 allow different order with = 0
	$(x = 2)(x = 3) = 0$ or $\frac{5 \pm \sqrt{(-5)^2 - 4 \times 6}}{(-5)^2 - 4 \times 6}$			M1 (x - 2.5) ² +6 - 6.25
	(x - 2)(x - 3)(-3) = 0			
		<i>x</i> = 2 or 3	4	A1
				T & I or no wking: 4 mks or 0 mks
				Total 4 marks

15.	2 overlapping circles, 12 in overlap			M1	
	6 in H only			M1	or 6 play H only M2
	2 in T only			M1	or 20-6, 6+12+ <i>x</i> =20, 20-18, 35-33: M3
		14	4	A1	ans 2: M3A0
					Total 4 marks

16.	$9^2 + 5^2 - 2 \times 5 \times 9 \times \cos x = 6^2$			M1	or $\cos x = 9^2 + 5^2 - 6^2$	M2
	$90\cos x = 70$ or $-90\cos x = -70$			M1	2×5×9	
	$(\cos x = \frac{70}{90})$					
		<i>x</i> = 38.9 or better	3	A1		
						Total 3 marks

(ζ	Working		Answer	Mark	Notes
17.	(ai)			-2	1	B1 or $x \neq -2$ or $x = -2$
	(ii)			<i>x</i> < 1	2	B2 B1 for $x \le 1$ or 0, -1, -2, -3
	(b)	√9 or √(10 - 1)				M1 1
		<u>1_</u> her√9 + 2				M1 or $\sqrt{x-1+2}$
		- 1		¹ / ₅ or 0.2	3	A1 ignore ans = -1
	(C)	$y = \sqrt{(x - 1)}$ $y^2 = x - 1$	- 1, √ Reverse order			$\begin{array}{c ccc} M1 & M1 & y = \sqrt{(x-1)} \\ M1 & M1dep & x = \sqrt{(y-1)} \end{array} \begin{array}{c} \text{condone } \sqrt{x-1 \text{ if}} \\ \text{next step correct} \end{array}$
		$x = y^2 + 1$	squ, +1			M1 M1 $x^2 = y - 1$
				$(g^{-1}(x) =) x^2 + 1 oe$	4	A1
						$y^2 + 1$ M3
						$y = x^2 + 1$ M3
						x = x + 1 MS SC $(\sigma^{-1}(x) =) (x + 1)^{2}$: B1
						Total 10 marks

18.	(a) (b)	$\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}$ alone	¹ / ₂₁₆ or 0.0046	2	M1 A1 M1	0.17^3 or 0.16^3 or better. Not $\times k$
	(6)	1, 1, 4 <u>and</u> 1, 2, 6 (or 2, 1, 6) seen or			M1	ie two routes incl 1, 1, 4
		implied $({}^{1}/_{6})^{3} \times 3$			M1	ie three routes and correct exp'n
			¹ / ₇₂ or ³ / ₂₁₆ or 0.014 or better	4	A1	$(^{1}/_{6})^{3}$ ×2 or $^{1}/_{108}$, no wking: M0A0
						Total 6 marks

Q	Working	Answer	Mark	Notes
19. (a)	$^{1}/_{2} \times 5 \times 5 \times \sin 60$			M1 $\frac{1}{2} \times 5 \times \sqrt{(5^2 - (5/2)^2)}$ or $\frac{1}{2} \times 5 \times 4.33$
		10.8	2	A1 (25√3)/4 M1A0
(b)	sect = $\frac{1}{6} \times \pi x 5^2$ or 13.1			M1
	"10.8"+2($^{1}/_{6} \times \pi \times 5^{2}$ -"10.8") or "10.8" + 2×2.26			M1 \triangle + 2(sect - \triangle)
	or $2 \times \frac{1}{6} \times \pi \times 5^2$ - "10.8"			or 2 × sect - \triangle Allow eg $\triangle = \frac{1}{2} \times 5 \times 5$
		15.4 cm ²	3	A1
				Total 5 marks

20 (i)	20	1	M1	B1
			A1	
(ii)	30	2		B2 or 1 sq reps freq of 5
				seen anywhere: B1
				Total 3 marks

21.	(a)		(4x - 1)(4x + 1)	1	B1	
	(bi)	16 × 10 ² - 1 seen or implied (4 × 10 - 1)(4 × 10 + 1) or 39 × 41	3 × 13 × 41	3	M1 M1 A1	13 or 39 or 41 or 123 as factor factors 3, 13, 41 or 39, 41 or 13, 123 Ans 3 × 533 M0A0
	(ii)	1599 × 10 ³ or 1599 × 1000			M1	or tree including 1000 or 10 and 100
	. ,		'3×13×41' × 2 ³ ×5 ³ oe	2	A1f	ft her (i) $\times 2^3 \times 5^3$
						Total 3 marks

Centre No.				Surname	Initial(s)
Candida	te No.			Signature	

Paper Reference(s)	Examiner's us	se only
4400/3 H		
London Examinations IGCSE	Team Leader's	use only
Mathematics	·	4
Paper 3H		
Higher Tier		
Monday 5 November 2007 – Afternoon		

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 21 questions in this question paper. The total mark for this paper is 100. There are 20 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited.

Turn over

edexcel

2. The table shows information about the scores in a game.

Score	Frequency
1	5
2	8
3	3
4	4

Work out the mean score.

(Total 3 marks)

.....

Q2

Leave blank

4.	The total number of students in Denton College is 280 160 of the students in Denton College are in Year 1 Express 160 as a percentage of 280 Give your answer correct to 2 significant figures.	Leave blank
	%	Q4
	(Total 2 marks)	

6.	$2.5 \text{ cm} \qquad \begin{array}{c} 7.1 \text{ cm} \\ a^{\circ} \end{array} \qquad \begin{array}{c} \text{Diagram NOT} \\ \text{accurately drawn} \end{array}$ Calculate the value of <i>a</i> . Give your answer correct to 3 significant figures.	Leave blank
	<i>a</i> =	Q6
	(Total 3 marks)	
7.	(a) $A = \{1, 2, 3, 4\}$ $B = \{2, 4, 6, 8\}$ Write down the members of $A \cup B$. (2) (b) $\mathcal{E} = \{\text{Positive integers less than 10}\}$ $P = \{3, 4, 5, 6, 7, 8\}$ $P \cap Q = \emptyset$ Write down all the possible members of Q .	
	(2)	Q7
	(Total 4 marks)	

Leave blank

8. Jim fires an arrow at a target.

The table shows all the possible outcomes and the probabilities of three of these outcomes.

Result	Probability
Bull's Eye	
Inner Ring	0.3
Outer Ring	0.4
Miss	0.2

Work out the probability that Jim's arrow will hit either the Bull's Eye or the Inner Ring.

	Q8
(Total 3 mai	r ks)
	9

9. (a) Expand
$$4(v+3)$$

(b) Simplify $\frac{w^2 \times w^2}{w^2}$
(c) Solve the equation $\frac{17-x}{7}=3$
(d) Solve the inequality $4v-5 < 6$
(e) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(g) (f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequality $4v-5 < 6$
(f) Solve the inequa

N 2 4 5 7 8 A 0 1 1 2 0

13. Factorise		Leave blank
(a) $x^2 - 100$		
	(1)	
(b) $x^2 - x - 12$		
(c) $3x^2 + 7x + 2$	(2)	
	(2)	Q13
	(Total 5 marks)	
		13
	- -	Furn over

 $|| \underbrace{100}_{N} \underbrace{100}_{2} \underbrace{100}_{4} \underbrace{100}_{5} \underbrace{100}_{7} \underbrace{100}_{8} \underbrace{100}_{8} \underbrace{100}_{1} \underbrace{100}_{4} \underbrace{100}_{1} \underbrace{100}$

	Nikos now takes another three shots.	Leave blank
	(c) Calculate the probability that he will score exactly 1 goal or exactly 2 goals.	
	(3)	Q17
	(Total 10 marks)	
18.	Some cases have to be lifted by a crane. Each case has a mass of 68 kg, correct to 2 significant figures.	
	(a) Write down the upper bound of the mass of a case.	
	kg (1)	
	A crane can lift safely a load of 1200 kg, correct to 2 significant figures.	
	(b) Find the greatest number of cases that the crane can lift safely in one load.	
	(3)	Q18
	(Total 4 marks)	

	Leave blank
21. A coin is biased so that the probability that it shows heads on any one throw is <i>p</i> . The coin is thrown twice.	
The probability that the coin shows heads exactly once is $\frac{8}{25}$	
Show that $25p^2 - 25p + 4 = 0$	
	0.21
TOTAL FOR PAPER: 100 MARKS	
TOTAL FOR PAPER: 100 MARKS END	
END	
TOTAL FOR PAPER: 100 MARKS END	
TOTAL FOR PAPER: 100 MARKS END	

4400 IGCSE Mathematics November 2007 Paper 3H

Q		Working	Answer	Mark	Notes	Notes		
1.	(a)	360 / 5 (= 72)			M1		or: 3 × 180 ÷ 5	
		(180 - "72") / 2			M1	dep	÷ 2	
			54	3	A1			
	(b)	360 / 5 or 180 - 2 x "54"			M1	or 72 seen		
			72	2	A1f			
								Total 5 marks

2.	1×5 + 2×8 + 3×3 + 4×4	(= 46)			M1	
	/ 20				M1	dep. Allow / his Σf
			2.3	3	A1	or 2 if ⁴⁶ / ₂₀ seen
						Total 3 marks

3.	(b)(i)		2x + 2x + x = 12	1	B1	oe ISW allow in (ii) if not contrad in (i) ignore units
	(ii)	5x = 12	<i>x</i> = 2.4	2	M1 A1	allow in (i) if not contrad in (ii) 4x = 12 SC1 x = 2.4, no wking: BOM1A1
						Total 3 marks

4.	(b)	160 x 100 or 4/7 x 100 280	57(.1)	2	M1 A1	
						Total 2 marks

5.	(a)	$\pi \times 2^2$			M1	
			12.6	2	A1	12.6 or better
	(b)	$\pi \times 3^2$ - ("12.6" or $\pi \times 2^2$)			M1	$\pi \times 3^2$
			15.7 to 15.8	2	A1	
	(C)	2 x π x 3			M1	allow $2\pi \times 3 - 2\pi \times 2$ for M1 only
			18.8	2	A1	18.8 to 18.9 (incl)
						Total 6 marks

6.	sin				M1	not sin 90
	2.5/7.1	or 0.352			A1	
			20.6	3	A1	
						Total 3 marks

7.	(a)	1, 2, 3, 4, 6, 8	2	B2	no repetitions
					B1 with repeats or one digit omitted
	(b)	1, 2, 9	2	B2	B1 if one digit is omitted or 1, 2, 9, 10
					Total 4 marks

8.	0.4 + 0.2 1 - (0.4 + 0.2)			M1 M1	dep	1 - (0.3 + 0.4 + 0.2) or 0.1 in table "0.1" + 0.3
		0.4	3	A1		
						Total 3 marks

9.	(a)		4v + 12	1	B1	
	(b)		W ⁸	2	B2	w ¹⁰ seen: B1
	(C)	$17 - x = 3 \times 7$			M1	
		17 = 21 + x or $-x = 4$			M1	or 17 = 3×7 + <i>x</i>
			<i>x</i> = -4	3	A1	
	(d)	4y < 6 + 5			M1	allow "=" only if ans incl "y <"
			y < 2.75	2	A1	or y < $^{11}/_4$ or y < $2^3/_4$ on line
						Total 8 marks

10.	(a)	Africa	1	B1	or 8.4 × 10 ⁸
	(b)	1.11x10 ¹⁰ or		M1	M1 for figs 111 or 1114
		1.114x10 ¹⁰	2	A1	
	(C)	1.66 or 1.7 or 1.67			B1 for figs 166 or 17 or 167 or 166
		or 1.66 or 5/3 or $1^2/_3$	2	B2	
					Total 5 marks

11.	2x - y = 7 or $3x = x + y + 7$			M1	correctly collect <i>x</i> terms	
	2x = y + 7			M1	correctly add y to bs	
		(y + 7)/2	3	A1	or $\frac{1}{2}(y + 7)$ or $\frac{y}{2} + 3.5$ etc	
						Total 3 marks

12.	(a)	<i>BC</i> /8 = cos25 or = 8cos25			M1	
			7.25(046)	2	A1	
	(b)	7.5 ² - "7.25046" ²			M1	
		$\int (7.5^2 - "7.25046"^2)$			M1	dep
			1.92	3	A1f	ft (a)
						Total 5 marks

13.	(a)		(x + 10)(x - 10)	1	B1	or $(x - 10)(x + 10)$ ignore "solutions"
	(b)	$(x \pm 4)(x \pm 3)$			M1	
			(x - 4)(x + 3)	2	A1	ignore "solutions"
	(C)	(3x)(x) or $(+1)(+2)$			M1	
			(3x + 1)(x + 2)	2	A1	ignore "solutions"
						Total 5 marks

14.	4x + 10y = 32 or $x = (16-5y)/2or similar$			M1	Mult so coeffs of x or y are equal or make x or y subject
		$x = \frac{1}{2}, y = 3$	3	A1A1	Allow error in constant term
					Total 3 marks

15.	360 - 50			M1	⁵⁰ / ₃₆₀
	<u>"310"</u> or 0.861			M1	$50 \times \pi \times 12^2$
	360				360
	<u>"310"</u> x π x 12 ²			M1	$\pi \times 12^2 - 50 \times \pi \times 12^2$
	360				360
		389 to 390	4	A1	
					Total 4 marks

16.	(a)	x(x - 3), 2(x - 3)			M1M1	
			^x / ₂	3	A1	
	(b)	2x - 3(x - 1) or $2x - 3x + 3$ oe			M1	
		$(x - 1)x$ or $x^2 - x$			M1	in denom
			$\frac{3-x}{x(x-1)}$ or $\frac{3-x}{x^2-x}$	3	A1	
						Total 6 marks

17.	(a)		All correct		B2	ignore branches for 3 rd shot
				2		correct structure & labels <u>or</u> probs: B1
	(b)(i)	$(\frac{3}{4})^2$	⁹ / ₁₆ or 0.5625		M1	
				2	A1	or 0.563
	(ii)	³ / ₄ x ¹ / ₄			M1	
		$\frac{3}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{3}{4}$			M1	
			³ / ₈ or ⁶ / ₁₆ or 0.375	3	A1	
	(C)	$(\frac{3}{4})^3$ or $(\frac{1}{4})^3$			M1	$(\frac{3}{4})^2 \times (\frac{1}{4})$ or $(\frac{1}{4})^2 \times \frac{3}{4}$
		$1 - ((\frac{3}{4})^3 + (\frac{1}{4})^3)$	⁹ / ₁₆ or 0.5625		M1	$3 \times (\frac{3}{4})^2 \times (\frac{1}{4}) + 3 \times (\frac{1}{4})^2 \times \frac{3}{4}$
				3	A1	or 0.563
						$(\frac{3}{4})^2 \times (\frac{1}{4})^3$ or $(\frac{1}{4})^4 \times \frac{3}{4}$ M1
						$10 \times (\frac{3}{4})^2 \times (\frac{1}{4})^3 + 5 \times (\frac{1}{4})^4 \times \frac{3}{4}$ M1
						¹⁰⁵ / ₁₀₂₄ A1
						Total 10 marks

18.	(a)		68.5	1	B1	or 68.49 (with dot) or 68.499 (at least two 9's) or 68.49
	(b)	1150/"68.5" 16.8			M1 A1	
			16	3	A1	
						Total 4 marks

19.	(a)	$P = kw^3$			M1	
		$300 = k \times 12^3$			M1	
			$P = {}^{25}/{}_{144} W^3$	3	A1	or $P = 0.174w^3$ oe
	(b)	$"^{25}/_{144}$ " x 7.5 ³			M1	
			73.2	2	A1f	
	(C)	$("^{25}/_{144}" \times 10^3 (= 174))$			M1	$\frac{22}{144}$ can be k
		$2 \times \frac{25}{144} \times 10^{3} = \frac{25}{144} \times w^{3}$			M1	$2 \times $ "174" = "0.174" x w ³ or 2000 = w ³
		³ /2000			M1	or 10 x ³ /2 M3
			12.6	4	A1	
						Total 9 marks

20.	(a)	1 + √3 + √3 + 3			M1	oe
			4 + 2√3	2	A1	
	(b)	2^{2} + $(1+\sqrt{3})^{2}$ - $2x2x(1 + \sqrt{3})cos60$			M1	oe allow 2 ² + 2.73 ² - 2x2x2.73cos60 oe
		$= 4 + "4 + 2\sqrt{3}" - 2(1 + \sqrt{3})$			M1	oe ft (a), as long as in form $a + \int b$
						must have exp'd bracket & subst'd cos60
		= 6			A1	
			√6	4	A1	not ISW decimals can score only 1 st M1
						Total 6 marks

21.	(a)	$2p(1 - p) = {}^{8}/_{25}$		M1	allow $p(1 - p) = \frac{8}{25}$ for M1 only
		$p(1 - p) = \frac{4}{25}$ or $p - p^2 = \frac{4}{25}$		M1	or $50p(1-p) = 8$ or $50(p - p^2) = 8$
		$25p(1 - p) = 4 \text{ or } 25(p - p^2) = 4$	3	A1	or $25p - 25p^2 = 4$ oe, no fracs & 2 canc'ld
					<u>Alt 1</u> <u>Alt 2</u>
					$2p(1 - p) = {}^{8}/_{25}$ oe M1 solve equn M1
					$p = \frac{1}{5} \text{ or } \frac{4}{5}$ M1 $2x^{1}/5x^{4}/5$ M1
					$(p - \frac{1}{5})(p - \frac{4}{5}) = 0$ or
					$(5p - 1)(5p - 4) = 0$ A1 $= \frac{8}{25}$ A1
					$p = \frac{1}{5}$ or $\frac{4}{5}$ seen without
					$2p(1 - p) = \frac{8}{25}$ or $2 \times \frac{1}{5} \times \frac{4}{5}$: MOMOAO
					Total 3 marks

Centre No.				Surname	Initial(s)
Candida	te No.			Signature	

Paper Reference(s)	Exam	iner's use	e only
4400/4H			
London Examinations IGCSE	Team L	.eader's u	ise only
Mathematics			
Paper 4H			

Higher Tier

Wednesday 7 November 2007 – Afternoon

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 26 questions in this question paper. The total mark for this paper is 100. There are 20 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited.

dexcel

Turn over

Turn over

Leave blank

7. There are four grades of egg. The table shows how many eggs of each grade wer

he table shows how many eggs of each grade were laid by a hen last year.
--

Grade	Number of eggs
Extra large	55
Large	48
Medium	35
Small	12

(a) In the first four months of this year, the hen laid 60 eggs.

Work out an estimate for the number of Extra large eggs the hen laid in these four months.

(3)

.....

(b) The table below shows how the grade of an egg is related to its weight.

Grade	Weight (w grams)
Extra large	<i>w</i> ≥ 73
Large	$63 \leqslant w < 73$
Medium	$53 \leqslant w < 63$
Small	w < 53

Work out an estimate for the total weight of 48 Large eggs and 35 Medium eggs.

..... g (3)

(c) Jody wants to use the information in the table to work out an estimate for the total weight of all the eggs laid by the hen last year.

Explain why it is difficult to do this.

(1) Q7

(Total 7 marks)

13. The distance Jamila drove in 2006 was 14% more than the distance she drove in 2005 She drove 20 805 km in 2006	Leave blank
Calculate the distance she drove in 2005	
kn	Q13
(Total 3 marks)	, []
14. (a) Simplify $2n \times 3n$	
(1))
(b) Simplify $\frac{3x^4y^5}{2}$	
xy^3	
(2))
(c) Simplify $(t^3)^4$	
(1))
(d) Simplify $(2p^{-2})^{-3}$	
(2) Q14
(Total 6 marks)	

17. (a) Find the Highest Common Factor of 72 and 90		Leave blank
(b) Find the Lowest Common Multiple of 72 and 90		
	(2)	Q17
	(Total 4 marks)	
18. (a) The equation of a line L is $x + 2y = 6$ Find the gradient of L.		
(b) Write down the equation of the line which is parallel to L and wh the point (0, 5).	(3) ich passes through	
		Q18
	(Total 4 marks)	
		13
N 2 9 1 0 7 A 0 1 3 2 0	-	

22.	Leave blank
A B C	NOT drawn
A, B, C and D are points on a circle, centre O. AC is a diameter of the circle. Angle $CBD = 38^{\circ}$.	
(a) (i) Find the size of angle <i>DAC</i> .	
	o
(ii) Give a reason for your answer.	
(b) Find the size of angle <i>ACD</i> .	(2)
	o
	(2) Q22
(Tota)	4 marks)

23.	$f: x \mapsto 3x + 2$ $g: x \mapsto 2x - 5$	Leave blank
	 (a) Express the composite function fg in the form fg : x → Give your answer as simply as possible. 	
	$fg: x \mapsto$	
	(2)	
	(b) Express the inverse function f^{-1} in the form $f^{-1}: x \mapsto \dots$	
	$f^{-1}: x \mapsto \dots$ (2)	Q23
	(Total 4 marks)	
24.		
	Box A Box B	
	In Box A, there are 3 black counters and 2 white counters. In Box B, there are 2 black counters and 1 white counter.	
	Farah takes at random a counter from Box A and puts it in Box B. She then takes at random a counter from Box B.	
	Work out the probability that the counter she takes from Box B will be a black counter.	
		Q24
	(Total 3 marks)	
	1 1 	rn over

(1-)	$S_{a} = \frac{2}{3} - \frac{7}{3} + \frac{11}{2} = 0$	Leave blank
(b)	Solve $y^2 - 7y + 11 = 0$ Give your solutions correct to 3 significant figures.	
	(3)	
(c)	(i) Use your answer to part (b) to find the value of x in the diagram.	
	(ii) Give a reason for your answer to (i)	
	(ii) Give a reason for your answer to (i).	
	(2)	Q25
	(Total 7 marks)	
	PLEASE TURN OVER FOR QUESTION 26	
		19

I IANIINI, AIA IIAIA INAN IIAII ANII IANII IANII ANII AN N 2 9 1 0 7 A 0 2 0 2 0

4400 IGCSE Mathematics November 2007 Paper 4H

Q	Working	Answer	Mark	Notes	
1.	$\frac{1.6}{2.5}$		2	M1	for 1.6 or 2.5 seen or for 2.430
		0.64		A1	Accept $\frac{16}{25}$
					Total 2 marks

2.	(a)	5(<i>x</i> - 4)	1	B1	Cao
	(b)	y(y + 6)	2	B2	B1 for factors, which, when expanded and simplified, give two terms, one of which is correct except $(y + 6)(y - 6)$ and similar SC B1 for $y(y + 6y)$
					Total 3 marks

3.	630 × 1.45 ÷ 2.61		2	M1	for $\frac{630}{2.61}$ or 241.38 or better or 241.37 or 630 × 1.45 or 913.5 or 0.55 seen or 1.8 seen
		350		A1	Accept 349.99 or 350
					Total 2 marks

4.	Reflection in x =	4 2	B1	for reflection, reflect
			B1	for $x = 4$ stated or eg 'in dotted line'
				Total 2 marks

5.	72 ÷ 6 or 12 seen		2	M1	
		84		A1	cao
					Total 2 marks

6.	(a)(i)		57	2	B1	cao	
	(ii)		alternate angles		B1		
	(b)	and sum of angles o or alli and (ver and sum of angles o	corresponding angles and sum of angles on a straight line is 180° or allied or co-interior angles and (vertically) opposite angles or alternate angles and sum of angles on a straight line is 180°		B1	for one pair	Do not accept Z angles or F angles
			71		B1	сао	
							Total 4 marks

7.	(a)	$\frac{55}{150} \times 60$		3	B1 M1	for $\frac{55}{150}$ oe or $\frac{60}{150}$ oe seen for $\frac{55}{150} \times 60$
			22		A1	CaO
	(b)	68 × 48 + 58 × 35 = 3264 + 2030		3	M1	2 products m × f where m is within each interval and consistent (inc end points)
					M1	(dep) for use of halfway values
			5294		A1	Accept 5300 or 5290 if M1 + M1 scored
	(C)	eg no upper limit for extr for small, don't kn	ra large, no lower limit now midpoints for XL, S	1	B1	
						Total 7 marks

8.	(a)	 4 5	2	B2	B1 for either open circle at -2 or solid circle at 3
	(b)	-1 0 1 2 3	2	B2	B1 for all correct + 1 wrong or for four correct and none wrong
					Total 4 marks

9.	arc centre <i>B</i> cutting <i>AB</i> and <i>AC</i> at (say) <i>P</i> and <i>Q</i>	2	B1	
	arcs centre <i>P</i> and <i>Q</i> of equal radii which intersect at <i>R</i> (say) and <i>BR</i> joined		B1	(dep) bisector within tolerance
				Total 2 marks

10.	(a)	7 2 (-1) -2 -1 2 7	2	B2	B1 for 4 correct
	(b)	graph	2	B2	B1 for 5 points plotted correctly <u>+</u> ½ sq ft from (a) if at least B1 scored B1 for correct curve or, if there are 1 or 2 errors in (a) and no plotting errors, award for a curve passing through the 7 points from their table.
					Total 4 marks

11.	$420 \times \frac{100}{56}$		3	M1	for 420 ÷ 56 or 7.5 seen
				M1	(dep) for × 100
		750		A1	CaO
					Total 3 marks

12.	4.9^2 + 16.8 ² or 24.01 + 282.24		3	M1	for squaring and adding
	1000000000000000000000000000000000000			M1	(dep) for square root
	√4.9 ² +16.8 ²	17 5		۸1	
		17.5			Total 3 marks

13.	$\frac{20805}{1.14}$ or $20805 \times \frac{100}{114}$		3	M2	for $\frac{20805}{1.14}$ or $20805 \times \frac{100}{114}$ M1 for $\frac{20805}{114}$, 114% = 20805 or 182.5 seen	
		18 250		A1	сао	
						Total 4 marks

14.	(a)	6n ²	1	B1	CaO
	(b)	$3x^3y^2$	2	B2	B1 for x^3 or y^2
	(c)	t ¹²	1	B1	CaO
	(d)	$\frac{p^6}{8}$	2	B2	B1 for $\frac{1}{8}$ oe or for p^6
					Total 6 marks

15.	(a)	$6.8 \times \frac{15}{10}$		2	M1	
			10.2		A1	сао
	(b)	$12.3 \times \frac{10}{15}$		2	M1	
			8.2		A1	cao
	(C)	$\frac{15}{10}$ or 1.5 oe		2	M1	for $\frac{15}{10}$ or 1.5 oe
						or for $\left(\frac{10}{15}\right)^2$ or $\frac{4}{9}$ or 0.4 oe or for correct expression which, if accurately evaluated, gives the correct answer or for the area of one of the triangles evaluated correctly Area $\triangle ABC$ rounds to 62.3 (62.2700) NOT 62.73 Area $\triangle CDE$ rounds to 27.7 (27.6755) NOT 27.88 Note: the angles of the triangle are 42.5°, 54.5° and 83.1°.
			2.25 oe		A1	for 2.25 or $2\frac{1}{4}$ or $\frac{9}{4}$ or for answer rounding to 2.25
						Even if M1 awarded, do not award A1 for a correct answer, if there are any errors in the working.
						Total 6 marks

16.	(a)(i)		15	2	B1	сао
	(ii)		7 or 8		B1	
	(b)	26 or 261/2		2	M1	may be stated or indicated on graph
			54 - 55 inc		A1	
						Total 4 marks

17.	(a)	72 = $2^3 \times 3^2$ and 90 = $2 \times 3^2 \times 5$ or 2 × 3 ² or 1,2,3,4,6,8,9,12,18, 24, 36,72 and 1,2,3,5,6,9,10,15,18,30,45,90		2	M1	Need not be products of powers; accept products or lists ie 2,2,2,3,3 and 2,3,3,5 Prime factors may be shown as factor trees
			18		A1	CaO
	(b)	2 ³ × 3 ² × 5 or 72, 144, 216, 288, 360 and 90, 180, 270, 360		2	M1	
			360		A1	CaO
						Total 4 marks

18.	(a)	2y = 6 - x		3	M1	for 2y = 6 - x or for stating coordinates of 2 points on line
		$y = 3 - \frac{x}{2}$ or $y = \frac{6 - x}{2}$			M1	for correct rearrangement of equation with y as subject or for attempt to find gradient of line joining two stated points
			-1/2		A1	for -½ oe dep only on first M1 SC if M0, award B1 for correct ft from incorrect rearrangement
	(b)		$y = -\frac{1}{2x} + 5$ oe	1	B1	correct answer or ft from (a) Equivalent equations include x + 2y = 10
						Total 4 marks

8 4 B1 cao	
12 B1 cao	
0 B1 cao	
16 B1 cao	
	Total 4 marks

20.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 10x + 8$		4	B2	B1 for 2 correct terms
		$3 \times 2^2 - 10 \times 2 + 8$			M1	(dep on at least B1) for substituting x = 2
			0		A1	сао
	(b)	(could be) turning point, max or min, (is) stationary point tangent is parallel to the <i>x</i> =axis		1	B1	
						Total 5 marks

21.	(a)	bar h	neight 21 little squares	2	B1	Allow <u>+</u> ½ sq
		bar height 6 little squares			B1	Allow <u>+</u> ½ sq
	(b)		8	1	B1	Cao
						Total 3 marks

22.	(a)(i)		38	2	B1	Cao
	(ii)	Angles in the same segment oe			B1	Award if 'same segment', 'same arc'
						or 'same chord' stated or implied
	(b)		52	2	B2	B1 for $\angle ADC = 90^{\circ}$ or $\angle COD = 76^{\circ}$ stated or
						indicated on diagram
						Total 4 marks

23.	(a)	3(2x - 5) + 2 or 6x - 15 + 2		2	M1	
			6 <i>x</i> - 13		A1	
	(b)	eg $\begin{array}{c} \times 3 \rightarrow +2 \\ \div 3 \leftarrow -2 \end{array}$ or attempt to make x the subject of y = 3x + 2 or x = 3y + 2			M1	
			$\frac{x-2}{3}$ oe		A1	
						Total 4 marks

24.	$\frac{3}{5} \times \frac{3}{4} + \frac{2}{5} \times \frac{2}{4}$		3	M2	for sum of both products (M1 if one correct product seen)
		13 20		A1	
					Total 3 marks

25.	(a)	3x + x(4 - x) = 11		2	M1		
		or $4x + x(3 - x) = 11$					
		or $(4-x)(3-x) = 1$					Δward M1 Δ1
		or $12 - (4 - x)(3 - x) = 11$					for $4x + 3x - x^2 - 11$
		$3x + 4x - x^2 = 11$			A1		
		or $4x + 3x - x^2 = 11$					
		or $12 - 4x - 3x + x^2 = 1$					
		or $12 - 12 + 4x + 3x - x^2 = 11$					
	(b)	$7 \pm \sqrt{(-7)^2 - 4 \times 11}$		2	AA 1	for correct substitution	
		2		5	////	Condone omission of bra	ockets
		$7 + \sqrt{5}$					
		$\left \frac{\gamma \pm \sqrt{3}}{2}\right $			M1	for correct simplification	n
			4.62.2.38		Δ1	for 3 sf or better	
						(4.61803, 2.38196)	
	(c)(i)		2.38	2	B1	for 2.38 or better	
	(ii)		eg x < 3		B1		
							Total 7 marks

26.	(a)	$\frac{1}{3}\pi r^2 \times r + \pi r^2 \times r$ or $\frac{1}{3}\pi r^3 + \pi r^3$		2	M1	
			$\frac{4}{3}\pi\pi^3$		A1	dep on M1
	(b)	$\pi r l + 2\pi r^2 + \pi r^2$ oe		3	M1	
		$l > r \text{ or } l = r\sqrt{2} \text{ oe}$			M1	
			$> 4\pi r^2$		A1	
						Total 5 marks

4400/3H

London Examinations IGCSE

Examiner's use only				
Team L	eader's u	ise only		

Mathematics

Paper 3H

Higher Tier

Thursday 15 May 2008 - Morning

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 22 questions in this question paper. The total mark for this paper is 100. There are 24 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

Turn over

Answer ALL TWENTY TWO questions	Leave blank
Answer ALL I WENTY I WO questions.	
write your answers in the spaces provided.	
You must write down all stages in your working.	
Without sufficient working, correct answers may be awarded no marks.	
1. Find the value of $\frac{3.6 \times 4.8}{5.6 - 3.2}$	
	Q1
(Total 2 marks)	
 2. A bag contains red discs, black discs and white discs. The number of black discs is equal to the number of white discs. Selina is going to take a disc at random from the bag. The probability that she will take a red disc is 0.6 Work out the probability that she will take a black disc. 	
	Q2
(Total 2 marks)	
	3 urn over

		Leave blank
4.	Bronze is made from copper and tin. The ratio of the weight of copper to the weight of tin is 3 : 1	
	Work out the weight of copper in 280 grams of bronze.	
	grams	Q4
	(Total 2 marks)	
5.	$\mathscr{E} = \{ \text{odd numbers} \}$	
	$A = \{1, 5, 9, 13, 17\}$ $B = \{1, 9, 17, 25, 33\}$ $C = \{7, 11, 15\}$	
	(a) List the members of the set	
	(i) $A \cap B$,	
	(ii) $A \cup B$.	
	(2)	
	(b) Explain why $A \cap C = \emptyset$	
		Q5
	(Total 3 marks)	
		5

6		Leave blank
	x° 8 cm Diagram NOT accurately drawn	
	Work out the value of <i>x</i> . Give your value correct to 1 decimal place.	
	x =	Q6
	(Total 3 marks)	
7.	The diameter of a circle is 7.8 cm.	
	Calculate the circumference of the circle. Give your answer correct to 3 significant figures.	
	cm	Q 7
	(Total 2 marks)	

9.	(a)	Solve $7(x - 1) = 5 - 2x$ You must show sufficient working.		Leave blank
	(b)	(i) Solve the inequality $4x + 5 \le 21$	<i>x</i> =(3)	
		(ii) <i>n</i> is a positive integer. Write down all the values of <i>n</i> which satisfy $4n + 5 \le 21$		
			(4) (Total 7 marks)	Q9

10.	Cara's salary was increased from \$28250 to \$29832	Leave blank
	(a) Work out the percentage increase in Cara's salary.	
	(3) Pedro's salary was increased by 5.2%. After the increase, his salary was \$28141	
	(b) Work out his salary before the increase.	
	\$	010
	(Total 6 marks)	
		9

Pulse rate (<i>p</i> beats/min)	Frequency
50	7
60	21
70	15
80	14
90	3

11. The table shows information about the pulse rates of 60 people, when they were resting.

(a) Write down the modal class.

 Leave blank

(b) Work out an estimate for the mean pulse rate of the 60 people.

..... beats/min (4)

N 2 9 4 3 7 A 0 1 1 2
12.	L b	eave. lank
s Construction Diagram accurately	NOT y drawn	
The area of circle S is 4 cm ² . The radius of circle T is 3 times the radius of circle S.		
Work out the area of circle T .		
·······	cm ² Q1 (Total 2 marks)	12

Leave blank

Turn over

14. (a) Factorise $10y - 15$		Leave blank
	(1)	
(b) Factorise completely $9p^2q + 12pq^2$		
	(2)	
(c) (i) Factorise $x^2 + 6x - 16$		
(ii) Solve $x^2 + 6x - 16 = 0$		
	(3)	Q14
	(Total 6 marks)	
15. Mia's weight is 57 kg, correct to the nearest kilogram.		
(a) Write down		
(i) the upper bound of her weight,		
	kg	
(ii) the lower bound of her weight.		
	kg (2)	
Alice's weight is 62 kg, correct to the nearest kilogram.		
(b) Work out the upper bound for the difference between A weight.	lice's weight and Mia's	
	kσ	
	(2)	Q15
	(Total 4 marks)	

r																					Leave blank
16.	Here a Each c	are 9 card	cards) has a	s. nu	mber	on i	it.														
] []		1]]]]	_	٦					
	20		21		22		23		24		25		26		27		28	8			
	Lee ta He rec	kes cord	a card s the r	l at 1un	rando iber w	m. vhic	h is or	n th	e card	and	l repla	ices	the ca	ard.							
	He the	en ta	akes a	sec	cond c	ard	at ran	don	n and	reco	ords th	le n	umber	: wl	nich is	s on	the	card	1.		
	(a) C	alcu	late th	ne p	orobab	ilit	y that I	he v	vill tal	ke t	wo ev	en	numbe	ers.							
																	•••••		(2	 2)	
	(b) C	alcu	late th	ne p	orobab	oility	y that I	he v	vill tal	ke t	wo nu	mb	ers wi	th a	ı sum	of 4	43				
																		•••••			016
																	_	_	(3)	
																(10	otal :	5 m	arks)	
																					15

 17. The distance, <i>d</i> kilometres, of the horizon from a person is directly proportional to the square root of the person's height, <i>h</i> metres, above sea level. When <i>h</i> = 225, <i>d</i> = 54 (a) Find a formula for <i>d</i> in terms of <i>h</i>. 	Leave blank
 d =	
kilometres (1) (c) Calculate the height above sea level of a person, when the distance of the horizon is 61.2 kilometres.	
metres (2)	Q17
(Total 6 marks)	

N 2 9 4 3 7 A 0 1 8 2 4

N 2 9 4 3 7 A 0 2 0 2 4

(b) Find an estimate for the solution of the equation $f(x) = 0$		Leave blank
	x =(1)	
The equation $f(x) = mx + c$ where <i>m</i> and <i>c</i> are numbers, has three solutions of the solutions are $x = -1$ and $x = 1$	itions.	
(c) (i) Find the value of <i>c</i> .		
(ii) Find the third solution of the equation $f(x) = mx + c$	<i>c</i> =	
(ii) That the third solution of the equation $f(x) = mx + c$.		
	x =(4)	Q21
	(Total 8 marks)	
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ $		21 Turn over

Q	Working	Answer	Mark	Notes
1.	$\frac{17.28}{2.4}$		2	M1 for 17.28 or 2.4 or – 0.114 seen
		7.2		A1 for 7.2 oe inc $7\frac{1}{5}$ and $\frac{36}{5}$
				Total 2 marks

2.	1-0.6		2	M1	for 1 – 0.6 or 0.4 seen
	2				or $\frac{x}{2}$ where 0 < x < 1
		0.2 oe		A1	for 0.2 oe
					Total 2 marks

3.	(a)	Enlargement scale factor 2 centre (1, 3)	3	B3	B1 for enlargement, enlarge etc B1 for 2, × 2, two, $\frac{2}{1}$, 1 : 2, 2 : 1 B1 for (1, 3) Condone omission of brackets but do not accept $\begin{pmatrix} 1\\ 3 \end{pmatrix}$	These marks are
	(b)	Reflection in the line y = x	2	B2	B1 for reflection, reflect etc B1 for $y = x$ oe inc eg 'in line from (2,2) to (5,5)', 'in dotted line shown'	but award no marks if answer is not a single transformation
						Total 5 marks

4.	3 + 1 or 4 seen		2	M1	for 3 + 1 or 4 seen
		210		A1	for 210 cao
					Total 2 marks

5.	(a)(i)	1, 9, 17	2	B1	cao	Brackets not
	(ii)	1, 5, 9, 13, 17, 25, 33		B1	cao (B0 if 1, 9 or 17 repeated)	necessary
	(b)	eg No members in common. The intersection is empty. None of the members of <i>A</i> & <i>C</i> are the same. They don't have the same numbers. No numbers are in both <i>A</i> and <i>C</i> .	1	B1		
						Total 3 marks

6.	$\tan x^{\circ} = \frac{3}{8} = 0.375$		3	M1 A1	for tan for $\frac{3}{8}$ or 0.375	or M1 for sin and $\frac{3}{\sqrt{73"}}$ following correct Pythagoras and A1 for 0.3511 or M1 for cos and $\frac{8}{\sqrt{73"}}$ following correct Pythagoras
						correct Pythagoras
		20 ((<u>20</u> ()))	and AT 101 0.9363
		20.6		A1	for 20.6 or better	
					(Accept 20.55604 rounded or trunc	ated to 4 sig figs or
					more)	
						Total 3 marks

7.	$\pi \times 7.8 \text{ or } 2\pi \times 3.9$		2	M1	for $\pi \times 7.8$ or $2\pi \times 3.9$	
		24.5		A1	for 24.5 or for answer which rounds	
					to 24.49, 24.50 or 24.51	
					$(\pi ightarrow 24.5044$	
					$3.14 \rightarrow 24.492$	
					3.142 → 24.5076)	
					T	Total 2 marks

8.	(a)		n = 2p + 1 oe	3	B3 for $n = 2p + 1$ oe eg $n = p2 + 1$, $1 + p \times 2 = n$, n = p + p + 1 B2 for $2p + 1$ oe B1 for $n =$ linear function of p eg $n = p + 1$
	(b)	$2p = n - 1$ or $\frac{n}{2} = p + \frac{1}{2}$		2	M1 for $2p = n - 1$ or $\frac{n}{2} = p + \frac{1}{2}$
			$\frac{n-1}{2}$ oe		A1 for $\frac{n-1}{2}$ oe inc $\frac{n}{2} - \frac{1}{2}$
					Total 5 marks

9. (a)	7x - 7 = 5 - 2x		3	M1	for 7x – 7 seen
	7x + 2x = 5 + 7 or $9x = 12$			M1	for 7x + 2x = 5 + 7 or 9x = 12
					or for $7x + 2x = 5 + 1$ or $9x = 6$ following $7x - 1 = 5 - 2x$
		$1\frac{1}{3}$ oe		A1	for $1\frac{1}{3}$ oe inc $\frac{4}{3}$, $\frac{12}{9}$, 1.3, 1.33
(b)(i)	4 <i>x</i> ≤16		4	M1	for 4x ≤16
		x ≤ 4		A1	for $x \le 4$
(ii)		1234		B2	B1 for 3 correct and none wrong
					or for 4 correct and 1 wrong
					Total 7 marks

10.	(a)	29 832 - 28 250 or 1582 seen		3	M1		or	or
					M1	for $\frac{1582}{28250}$ or $\frac{1582}{29832}$ or 0.056 or 0.053	M1 for 29832 28250 or 1.056 or 105.6 M1 for "1.056" - 1 or "105.6" - 100	M1 for $\frac{28250}{29832}$ or 0.9469 or 94.69 M1 for 1 - "0.9469" or 100 - "94.69"
			5.6		A1	cao (Do NOT award for	5.3)	
	(b)	$\frac{28141}{1.052}$ or $28141 \times \frac{100}{105.2}$		3	M2	for $\frac{28141}{1.052}$ or $28141 \times \frac{1}{10}$ M1 for $\frac{28141}{105.2}$, 105.2%=2 or 267.5(0) seen	00 5.2 28141	
			26 750		A1	cao		
								Total 6 marks

11.	(a)		60 < <i>p</i> ≤ 70	1	B1	Accept 60-70
	(b)		<u> </u>	4	M1	for finding at least four products $f \times x$ consistently within intervals (inc end points) and summing them
		55 × 7 + 65 × 21 + 75 × 15 + 85 × 14 + or 385 + 1365 + 1125 + 1190 + 285 or	+ 65 × 21 + 75 × 15 + 85 × 14 + 95 × 3 + 1365 + 1125 + 1190 + 285 or 4350		M1	(dep) for use of halfway values (55, 65,) or (55.5, 65.5,)
		<u>"4350"</u> 60			M1	"4350" 60 (dep on 1st M1)
						for division by 60 or for $\frac{"4380"}{60}$ if 55.5, 65.5, used
			72.5		A1	for 72.5 Award 4 marks for 73 if first two M marks awarded
	(C)	30 (or 30½) indicated on graph or stated		2	M1	for 30 (or 30½) indicated on graph or stated
			124 or 125		A1	Accept any value in range 124-125 inc eg 124, 124.5, 125
	(d)	Use of <i>p</i> = 131 on graph		2	M1	for use of $p = 131$ shown on graph or implied by 47, 48 or 49 stated
			≈ 12		A1	Accept any value in range 11-13 inc
						Total 9 marks

12.	3 ² or 9 or value which rounds to 3.39 seen		2	M1	for 3 ² or 9 or value which rounds to 3.39 seen
		36		A1	for 36 cao
					Total 2 marks

13.	finds int angle of hexagon $\frac{(6-2) \times 180}{6}$	finds ext angle of hexagon <u>360</u> 6		5	M1	for $\frac{(6-2) \times 180}{6}$ or $\frac{360}{6}$	Award M1 A1 for int angle of hexagon shown as 120° or ext angle shown as 60° on	If there is clear evidence the candidate thinks the <i>interior</i> angle is 60° or the <i>exterior</i> angle
	120	60			A1	for 120 or 60	printed diagram or on candidate's own diagram	is 120°, do not award these two marks.
	int angle of polygon = 15 or ext angle of polygon = 3	50 0			B1	int angle of polygon = 150 or ext angle of polygon = 30	Award B1 for int an shown as 150° or ex as 30° on printed d candidate's own dia	gle of polygon xt angle shown iagram or on agram
	$\frac{360}{30}$ or $\frac{180(n-2)}{n} = 150$	oe			M1	for $\frac{360}{30}$ or $\frac{180(n-2)}{n} = 1$	150 oe	
			12		A1	for 12 cao Award no marks for an a Award 5 marks for an an previous 4 marks scored	nswer of 12 with no swer of 12 if at least	working. t 2 of the
								Total 5 marks

	-				
14. (a)		5(2y - 3)	1	B1	CaO
(b)		3pq(3p +	2	B2	B1 for 3pq() or(3p + 4q) or
		4q)			$3p(3pq + 4q^2)$ or $3q(3p^2 + 4pq)$
					or $pq(9p + 12q)$ or $3(3p^2q + 4pq^2)$
					ie for two factors, one of which is $3pq$ or $(3p + 4q)$,
					or for correct, but incomplete, factorisation
(c)(i)	(X	x - 2)(x +	3	B2	B1 for one correct factor or
		8)			(x + 2)(x - 8)
(ii)		2, -8		B1	ft from (i) if two linear factors
					Total 6 marks

15. (a)(i)		57.5	2	B1 for 57.5, 57.49, 57.499, 57.4999 etc but <i>NOT</i> for 57.49
(ii)		56.5		B1 for 56.5 Also accept 56.50
(b)	62.5 – "56.5"		2	M1 for 62.5 - "56.5" Accept 62.49, 62.499, 62.4999 etc instead of 62.5
		6		A1 for 6, 5.9, 5.999 etc ft from "56.5"
				Total 4 marks

16.	(a)	$\frac{5}{9} \times \frac{5}{9}$		2	M1	for $\frac{5}{9} \times \frac{5}{9}$		Sample space method - award 2 marks for a
			25 81		A1	for $\frac{25}{81}$ or 0.31 or	better	correct answer, otherwise no marks
	(b)	$\frac{1}{9} \times \frac{1}{9}$ or $\frac{1}{81}$		3	M1	for $\frac{1}{9} \times \frac{1}{9}$ or $\frac{1}{81}$	SC M1 for $\frac{1}{9} \times \frac{1}{8}$ or $\frac{1}{72}$	Sample space method - award 3 marks for a
		$\frac{1}{9} \times \frac{1}{9} \times 4$ oe			M1	for $\frac{1}{9} \times \frac{1}{9} \times 4$ oe	$\frac{1}{9} \times \frac{1}{8} \times 4 \text{ oe}$	correct answer, otherwise no marks
			4 81		A1	for $\frac{4}{81}$ or 0.05 or	better	
								Total 5 marks

17. (a)	$d = k\sqrt{h}$		3	M1 ·	for $d = k\sqrt{h}$ but not for $d = \sqrt{h}$
	54 = 15k			M1 ·	for 54 = $15k$
					Also award for $54 = k\sqrt{225}$
		$3.6\sqrt{h}$ oe		A1 ·	for 3.6 \sqrt{h} oe
					Award 3 marks if answer is $d = k\sqrt{h}$ but k is evaluated as 3.6 oe in <i>any</i> part
(b)		28.8	1	B1 ·	ft from "3.6" \times 8 except for $k = 1$, if at least M1 scored in (a) (1 d.p. accuracy or better in follow through)
(C)	$\sqrt{h} = \frac{61.2}{"3.6"}$		2	M1	for $\sqrt{h} = \frac{61.2}{"3.6"}$ except for $k = 1$
		289		A1 (cao
					Total 6 marks

18.	$\frac{a}{\sin 35^\circ} = \frac{6.8}{\sin 64^\circ}$		3	M1	for correct statement of Sine rule
	$a = \frac{6.8 \sin 35^{\circ}}{\sin 64^{\circ}}$			M1	for correct rearrangement
		4.34		A1	for 4.34 or 4.3395 rounded or truncated to 4 figures or more
					Total 3 marks

19.	$12 - 12 - 12 - 12 \sqrt{2} - 12\sqrt{2}$	2	B1 for use of $\sqrt{8} = 2\sqrt{2}$ or $\sqrt{8} \times \sqrt{2} = \sqrt{16}$
	$\int e^{g} \frac{1}{\sqrt{8}} - \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} \times \frac{1}{\sqrt{2}} - \frac{1}{4}$		^{B1} for multiplication of numerator and denominator by $\sqrt{2}$ or
			$\sqrt{8}$
	$\frac{12}{12} = \frac{12}{12} = \frac{6}{12} \times \frac{\sqrt{2}}{12} = \frac{6\sqrt{2}}{12}$		(in either order)
	$\sqrt{8}$ $2\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ 2		SC B1 for $12 = 3\sqrt{16}$
	$\frac{12}{\sqrt{8}} = \frac{12}{\sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}} = \frac{12\sqrt{8}}{8} = \frac{3 \times 2\sqrt{2}}{2}$		or for both $\left(\frac{12}{\sqrt{8}}\right)^2 = \frac{144}{8} = 18$ and $(3\sqrt{2})^2 = 9 \times 2 = 18$
	$\left \frac{12}{\sqrt{8}} = \frac{12}{\sqrt{8}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{12\sqrt{2}}{\sqrt{16}} \right $		NB only total of 1 mark for either of these approaches
			Total 2 marks

20.	(a)(i)	59	2	B1	CaO
	(ii)	angle at the centre		B1	Three key points must be mentioned
		= twice angle at the circumference			1. angle at centre/middle/0/origin
		or angle at the circumference			2. twice/double/2× or half/ $\frac{1}{2}$ as appropriate
		= half the angle at the centre			angle at circumference/edge/perimeter
					(NOT e.g. angle R, angle PRQ, angle at top,
					angle at outside)

20. (b) 18 m of	80 – (x + 36) oe seen (possibly narked on diagram as size f∠ACB)		5	B1	for 180 – (x + 36) oe equation (This mark may still removed incorrectly (Max of 2 for omissi incorrect	seen, either on its own or as part be scored, even if brackets are lat .) SC M marks) on of brackets in -(x + 36) or their removal	of an er
х ог ог ог	= 2(180 - (x + 36)) r x = 2(180 - x - 36) r 180 - (x + 36) = $\frac{x}{2}$ r 180 - x - 36 = $\frac{1}{2}x$			M1	x = 2(180 or x = 2(180 or 180 - x or 180 - 3	$\frac{1}{2} - (x + 36))$ $\frac{1}{2} - (x + 36))$ $\frac{1}{2} + 36 = \frac{1}{2} x$ $\frac{1}{2} + 36 = \frac{1}{2} x$	M1
x or	x = 360 - 2x - 72 r x + $\frac{1}{2}x = 180 - 36$			M1	x = 360 - or x + $\frac{1}{2}$ x (Note - in an answer x = 144)	2x + 72 = 180 + 36 correct simplification results in r of	M1
3. or	3x = 360 - 72 or 3x = 288 r $\frac{3}{2}x = 180 - 36 \text{ or } \frac{3}{2}x = 144$	06		M1	630		

Please note that there is an alternative method on the next page.

20.	(b)	OR			
		x oe seen		5	B1
		$\frac{1}{2}$			
		(possibly marked on diagram as size			
		of ∠ACB)			
		Y			M1
		$x + 36 + \frac{2}{2} = 180$			
			96		
					Total 7 marks
L					

21.	(a)	tan drawn at (3, 6.5)		3	M1	tan or tan produced passes between points (2, $0 \le y \le 4$) and (4, $9 \le y \le 12$)
		vertical difference			M1	finds their vertical difference for two points on tan
		horizontal difference				horizontal difference
						or finds their $\frac{\text{vertical difference}}{\text{horizontal difference}}$ for two points on curve, where one of the points has an <i>x</i> -coordinate between 2.5 and 3 inc and the other point has an <i>x</i> -coordinate between 3 and 3.5 inc
			2.5-6.5 inc		A1	dep on both M marks
	(b)		-1.7	1	B1	Accept answer in range -1.71.65
	(c)(i)	line joining (-1,11) & (1,13)		4	M1	
			12		A1	Cao
	(ii)	produces line to cut curve again			M1	
			4		A1	ft from line
						Total 8 marks

22.	Area of $\triangle BCD = 2$	6	B1	for area of triangle BCD
	$(BD^{2} =)2^{2} + 2^{2} \text{ or } \left(\frac{BD}{2}\right)^{2} + \left(\frac{BD}{2}\right)^{2} = 2^{2}$ or $\frac{BD/2}{2} = \cos 45^{\circ} \text{ or } \sin 45^{\circ}$ or $\frac{BD}{2} = 2\cos 45^{\circ} \text{ or } 2\sin 45^{\circ}$		M1	for correct start to Pythagoras or trig for finding <i>BD</i> or $\left(\frac{BD}{2}\right)$
	$(BD =)\sqrt{8} \text{ or } 2\sqrt{2} \text{ or } 2.83 \text{ or better } (2.8284)$ or $\left(\frac{BD}{2}\right) = \sqrt{2} \text{ or } \frac{\sqrt{8}}{2}$ or 1.41 or better (1.4142)		A1	for lengths <i>BD</i> or $\left(\frac{BD}{2}\right)$ correct

second part method 1 - uses Pythagoras to find AM, where M is midpoint of BD

$AM^2 = 10^2 - \left(\frac{BD}{2}\right)^2$		M1	
$AM = \sqrt{98}$ or $7\sqrt{2}$ or 9.90 or better (9.8994)		A1	for $\sqrt{98}$ or $7\sqrt{2}$ 9.90 or better
	16	A1	for 16 or answer rounding to 16.0
			Total 6 marks

second part method 2 - finds angle A either using Cosine Ru	le or by	r first fi	nding	$\frac{A}{2}$ using trig
$\cos A = \frac{10^2 + 10^2 - BD^2}{2 \times 10 \times 10} \text{ or } \frac{192}{200} \text{ or } 0.96$ or $\sin \frac{A}{2} = \frac{BD/2}{10} \text{ or } \frac{\sqrt{8}}{20} \text{ or } 0.141 \text{ or better}$ (0.14142)			M1	
(A =) 16.3 or better (16.2602)			A1	for angle A correct
	16		A1	for 16 or answer rounding to 16.0
				Total 6 marks

second part method 3 - finds angle ABD (or angle ADB) using trig or Cosine Rule

$(\cos \angle ABD =) \frac{BD / 2}{10} \text{ or } (\cos \triangle ABD = \frac{\sqrt{8}}{20} \text{ or } 0.141$	$\angle ABD = \frac{10^2 + BD^2 - 10^2}{2 \times 10 \times BD}$ or better (0.14142)	M1	
$(\angle ABD =)$ 81.9° or better (8	1.8698)	A1	
	16	A1	for 16 or answer rounding to 16.0
			Total 6 marks

4400/4H

London Examinations IGCSE

Mathematics

Paper 4H

Higher Tier

Tuesday 20 May 2008 – Afternoon

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 23 questions in this question paper. The total mark for this paper is 100. There are 24 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

edexcel

Turn over

Answer ALL TWENTY THREE questions.	Leave blank
Write your answers in the spaces provided.	
You must write down all stages in your working.	
Without sufficient working, correct answers may be awarded no marks.	
1. Solve	
(a) $6x + 13 = 2x + 7$	
<i>x</i> =	
(3)	
(b) $\frac{y}{5} - 2 = 4$	
<i>y</i> =	
(2)	Q1
(Total 5 marks)	
	3
	urn over

2	The diagram shows two towns A and B on a map	Leave blank
4.	The diagram shows two towns, A and D, on a map.	
	North	
	A	
	В	
	(a) Measure the bearing of B from A .	
	0	
	(2)	
	(b) C is another town.	
	The bearing of C from A is 125° . Find the bearing of A from C.	
	٥ 	
	(2)	
	(Total 4 marks)	
4		

					Leave blank		
3.	The table shows information	on about the sho	be sizes of 20 p	people.			
		Shoe size	Number of people				
		5	3				
		6	8				
		7	5				
		8	2				
		9	2				
	(a) Find the median shoe s	size.		-			
				(2)			
	(b) Exactly 1 of these 20 p	beople has a co	llar size of 15.				
	Jean says "If you choo person will have eithe	Jean says "If you choose one of these 20 people at random, the probability that this person will have either a shoe size of 8 or a collar size of 15 is					
		2+-	$\frac{1}{3} = \frac{3}{3}$				
	Is Jean correct?	20 2	20 20				
	Explain your answer.						
				(2)	Q3		
				(Total 4 marks)			
					5		

			Leave blank
4.	(a)	Find the value of $3 - 5x$ when $x = -2$	
		(2)	
	(1)	(2)	
	(b)	Multiply out $S(y-2)$	
		(1)	
	(c)	Factorise $w^2 + 5w$	
		(2)	04
		(Total 5 marks)	
		(Total 5 marks)	

5.	The table shows info day.	ormation about the num	ber of letters deliv	vered to Manjit's house	each	Leave blank	
		Number of letters delivered	Probability				
		0	0.2				
		1 to 5	0.5				
		6 to 10	0.2	_			
		More than 10	0.1				
	(b) Find the probab more.	ility that on a particula	r day the numbe	r of letters delivered is	(2) 6 or		
					•••••		
				(T- 4-1 4	(2)	Q5	
				(10tal 4 Ma	<u>1 KS</u>		
Tu							

Leave
blank

11 Iochi al c . . 1

11.	Joshi chooses two numbers from the box.			
	Marie says	123.37		
	"When you round Joshi's two numbers to	123.43 123.47		
	I decimal place, they are equal."	123.53		
	Mikos says	123.57		
	"When you round Joshi's two numbers to 3 significant figures, they are NOT equal."	123.63 123.67		
	Both statements are correct.			
	Write down Joshi's two numbers.			
				Q11
		,,	(Total 2 marks)	

Leave blank **14.** A line L passes through the points (0, 1) and (4, 3). У 4 L 3 2 0 4 2 -1 1 2 3 4 5 x -1 2 (a) (i) Find the gradient of the line L. (ii) Find the equation of the line L. (4) 14 N 2 9 4 2 3 A 0 1 4 2 4

16. (a) Solve $x^2 - 5x + 3 = 0$		Leave blank
You must show all your working.		
	(3)	
(b) Solve the inequality $y^2 < 9$		
······································	(2)	Q16
(Total 5 n	1arks)	

20.	(a)	Evaluate $5 \times 10^{12} + 9 \times 10^{12}$ Give your answer in standard form	Leave blank
		(2)	
	(b)	Each of the numbers p , q and r is greater than 1 and less than 10	
		$p \times 10^{15} + q \times 10^{15} = r \times 10^n$ p + q > 10	
		(i) Find the value of <i>n</i> .	
		$n = \dots$	
		(ii) Find an expression for r in terms of p and q .	
		$r = \dots$ (2)	020
		(3) (Total 5 marks)	

Leave blank **21.** *PQRSTU* is a regular hexagon, centre *O*. The hexagon is made from six equilateral triangles of side 2.5 cm. Q 0 R U S $\overrightarrow{TU} = \mathbf{a}. \overrightarrow{UP} = \mathbf{b}.$ (a) Find, in terms of **a** and/or **b**, the vectors (i) \overrightarrow{TP} (1) (ii) \overrightarrow{PO} (1) (iii) \overrightarrow{UO} (1) (b) Find the modulus (magnitude) of \overrightarrow{UR} cm Q21 (1) (Total 4 marks)

Leave blank 22. $\widetilde{x^{\circ}}$ Diagram NOT 6 cm/ 8 cm accurately drawn The area of the triangle is 12 cm^2 . The angle x° is obtuse. Calculate the value of x. Q22 *x* = (Total 4 marks) 22

Summer 2008 IGCSE Maths	Mark Scheme - Paper 4H
-------------------------	------------------------

Q		Working	Answer	Mark		Notes
1.	(a)	6x - 2x = 7 - 13 or 2x - 6x = 13 - 7			M1	6x - 2x + 13 - 7 = 0 or 2x - 6x - 13 + 7 = 0
		4x = -6 or -4x = 6			M1	
			x = -1 ½ oe	3	A1	Accept -6/4 or -3/2 (not 6/-4 or 3/-2)
	(b)	$y - 2 \times 5 = 4 \times 5$ or $y/5 = 4 + 2$			M1	
			<i>y</i> = 30	2	A1	
						Total 5 marks

2. (a)	250±2	2	B2	B2 for angle 248 to 252 inclusive. B1 for angle 190 to 260 inclusive
(b)	305±3	2	B2	Award B1 for a bearing 270° < angle < 360°
				Total 4 marks

3.	(a)	20/2 or (20 + 1)/2			M1			
			6	2	A1			
	(b)		Yes, no or not nec'y		B2	Can't tell	B1	
			with consistent					
			reason	2				
								Total 4 marks

4 (a) 3 - 5 x -2	13	2	M1 A1	
(b)	5y - 10	1	B1	
(c)	<i>w</i> (<i>w</i> + 5)	2	B2	B1 for two factors that multiply to give at least one correct term. SC $w(w + 5w)$ B1
				Total 5 marks

5.	(a)	30 x 0.2			M1	or 30 ÷ 5
			6	2	A1	
	(b)	0.2 + 0.1			M1	
			0.3 oe	2	A1	
						Total 4 marks

6.	8/12 or 3/12	⁸ / ₁₂ , ³ / ₁₂	2	M1 A1	Accept (4x2)/(4x3) or (3x1)/(4x3) SC Multiply bs by 12 B1 Decimal methods M0 A0
					Total 2 marks

7.	(a)		3 ¹⁴	1	B1	
	(b)		7 ³	1	B1	
	(c)	$5^n = \frac{5^2 \times 5^7}{5^3}$ or $n + 3 - 7 = 2$	_		M1	Accept $5^{n+3} = 5^9$
		5	<i>n</i> = 6	2	A1	
	(d)	Product of positive integer powers of both 2 and 3 only			M1	Powers and/or products may be evaluated.
			24 or 2 ³ x 3	2	A1	
						Total 6 marks

8.	¹ / ₂ x 3 x 4 3 x 15 and 4 x 15 and 5 x 15			M1 M2	M1 for any ONE of these.
		192	4	A1	cao
					Total 4 marks

9.	8x = 12 or 8y = -4			M1	Eliminate one variable correctly. Accept
					3x + 5x - 8 = 4 or 5(4 - y)/3 - y = 8 oe
		x = 1.5 oe		A1	
		y = -0.5 oe	3	A1	No working M0 A0 A0
					Total 3 marks

10.	(a)		4.8	1	B1
	(b)	5 ² - "4.8" ² or 1.96 (/(5 ² - "4.8" ²)	1.4	3	M1 M1dep A1 cao
					Total 4 marks

11.	123.47 & 123.53	2	B2	B1 for 123.37 & 123.43	(equal to 1dp)
				Or 123.57 & 123.63	
					Total 2 marks

12.	(a)		63	1	B1	cao
	(b)	4 x 5/8 oe			M1	or $8 \div 2 = 4$ so $5 \div 2 =,$ or $4 \div 1.6$
			2.5	2	A1	
		or $\checkmark (6^2 + 5^2 - 2 \ge 6 \le 5 \cos 20^\circ)$	2.15			M1 for complete trig method.
		<i>or</i> (5 x sin 20°) / sin 63°	1.92			A1 for answer to 3SF.
	(C)	6 x 8/5 oe			M1	
			9.6	2	A1	
		or $\sqrt{(4^2 + 8^2 - 2 \times 4 \times 8 \cos '97^{\circ}')}$	9.37			M1 for complete trig method.
		or (8 x sin '97°')/sin 63°	8.91			A1 for answer to 3SF.
		or (4 x sin '97°')/sin 20°	11.6			
						Total 5 marks

13.	(a)		² / ₃ correctly placed once Correct structure All correct	3	B1 B1 B1	correct 4 new lines, ignore labels/probs including labels/probs
	(b)	$^{2}/_{3} \times ^{2}/_{3}$ $1^{-2}/_{3} \times ^{2}/_{3} \text{ or } ^{1}/_{3} + ^{2}/_{3} \times ^{1}/_{3} \text{ or }$ $^{1}/_{3} \times ^{2}/_{3} + ^{2}/_{3} \times ^{1}/_{3} + ^{1}/_{3} \times ^{1}/_{3}$	⁵ / ₉ oe	3	M1 M1 A1	$\frac{1}{3} \times \frac{2}{3}$ or $\frac{2}{3} \times \frac{1}{3}$ or $\frac{1}{3} \times \frac{1}{3}$
						Total 6 marks

14.	(a)(i)	vert diff/horiz diff for any 2 points on L			M1		
			0.5 oe	2	A1		
	(a)(ii)	y = "0.5"x + constant		2	M1f		
			Y = "0.5"x + 1 oe		A1f	SC "0.5"x + 1 or	L = "0.5"x + 1 B1
	(b)		x <u><</u> 4		B1	Allow <	SC All inequalities
			y <u>></u> -1	3	B1	Allow >	wrong way round B1
			Y <u><</u> 0.5x + 1 oe		B1	Allow <	
							Total 7 marks

15.	$3.1^2 + 3.9^2 - 2 \times 3.1 \times 3.9 \times \cos 80^\circ$ 9.6 + 15.2 - 4.2			M1 M1	3.1 ² + 3.9 ² - 24.2 x cos80° or 20.6
		4.54	3	A1	
					Total 3 marks

16.	(a)	$\frac{5 \pm \sqrt{((-5)^2 - 4x3)}}{2}$			M1	
		$\frac{5 \pm \sqrt{13}}{2}$			M1	
			4.30 and 0.697	3	A1	allow 4.3 and 0.697
	(b)	y < 3 or y > -3			M1	Allow $y \leq 3$ or $y \geq -3$
			-3 < y < 3	2	A1	
						Total 5 marks

17.	(a)	Try to find area of 2-4 block.			M1	or 8
						M0 for 2/8 or 9 - 1
		Try to find total area.			M1	With consistent scale.
			40%	3	A1	
	(b)	Half total area			M1f	ft dep on M1 for total area in (a)
		or try to find middle of distribution				
			4	2	A1	Cao
						Total 5 marks

18.	x x 4 = 3 x 14 oe			M1	$x/_{14} = \frac{3}{4}, \frac{3}{(3+4)} = \frac{x}{(x+14)}, \frac{4}{(3+4)} = \frac{14}{(x+14)}$
		x = 10.5 oe	2	A1	
					Total 2 marks

19.	(a)		2 <i>t</i> - 6	2	B1B1	
	(b)	2 x 5 - 6			M1f	
						Sub $t = 5$ in "ds/dt" dep on linear f(t)
			4	2	A1	M0 for (2 x 5 -6)/5
						Cao
	(C)	d("2t - 6")/dt			M1	
			2	2	A1	Attempt diff "ds/d <i>t</i> " dep on linear f(t)
						Cao
						Total 6 marks

20.	(a)	14 x 10 ¹² oe			M1	or 1.4e13
			1.4 x 10 ¹³	2	A1	
	(b)(i)		16	1	B1	Cao
	(b)(ii)	$(p + q) \times 10^{15} = r \times 10^{n}$			M1	may be seen in (i)
			(p + q)/10 oe	2	A1	$0.1(p+q), (p+q) \times 10^{-1},$
						$p \times 10^{15} + q \times 10^{15}$
						10^{16}
						Total 5 marks

21. (a)(i)	a + b	oe	1	B1
(a)(ii)	-a	oe	1	B1
(a)(iii)	b - a	oe	1	B1
(b)	5		1	B1
				Total 4 marks

22.	$\frac{1}{2} \times 6 \times 8 \times \sin x^{\circ} = 12$ sin $x^{\circ} = 0.5$ 30			M1 M1 A1	allow x = 30
		<i>x</i> = 150	4	A1	
					Total 4 marks

23.	(a)	(x - 3)(x + 3)			M1	
		x(x + 3)			M1	
			x - 3			1 3
			x	3	A1	$\frac{1-x}{x}$
	(b)	$\frac{1}{r^2} - 3$ 3			M1	ft $\frac{x+3}{x}$ only
		$\frac{x}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{$				Å
		x^2 x^2				
			1 - 3x ²	2	A1	cao
						Total 5 marks

4400/3H

London Examinations IGCSE

Examiner's use only					
Team L	eader's u	ise only			

Mathematics

Paper 3H

Higher Tier

Thursday 6 November 2008 - Morning

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Without sufficient working, correct answers may be awarded no marks.

You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 20 questions in this question paper. The total mark for this paper is 100. There are 20 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

Turn over

Answer ALL TWENTY questions	Leave blank
Write your answers in the snaces provided	
Vou must write down all stages in your working	
Tou must write uown an stages in your working.	
1. Find the value of $\frac{7.9 + 3.8}{8.6 - 2.1}$	
	Q1
(Total 2 marks)	
2. (a) Factorise $7p - 21$	
(1) (b) Solve $A(r+5) = 12$	
(b) Solve $4(x + 5) = 12$ You must show sufficient working.	
$x = \dots$	
	Q2
(Iotal 4 marks)	
	3
	irn ovei

	Leave
9.	Ulalik
$ \begin{array}{c} 8.7 \text{ cm} \\ \hline x^{\circ} \\ 5.4 \text{ cm} \end{array} $ Diagram NOT accurately drawn	
Work out the value of x . Give your answer correct to 1 decimal place.	
Give your answer correct to r deciniar place.	
$x = \dots$	Q9
(Total 3 marks)	
10. The point <i>A</i> has coordinates $(5, 13)$ and the point <i>B</i> has coordinates $(-1, 1)$.	
(a) Work out the coordinates of the midpoint of <i>AB</i> .	
(,) (2)	
The point <i>C</i> has coordinates $(0, 7)$. The line L passes through <i>C</i> and is parallel to the line <i>AB</i> .	
(b) Find an equation of the line L .	
	Q10
(lotal 6 marks)	
$\left \left \left$	9 urn ovei

Leave blank

11. The grouped frequency table gives information about life expectancy in the 54 countries of the Commonwealth.

Life expectancy (t years)	Frequency
$30 < t \leqslant 40$	4
$40 < t \leqslant 50$	6
$50 < t \leqslant 60$	9
$60 < t \leqslant 70$	14
$70 < t \leqslant 80$	21

(a) Complete the cumulative frequency table.

Life expectancy (<i>t</i> years)	Cumulative frequency
$30 < t \leqslant 40$	
$30 < t \leqslant 50$	
$30 < t \leqslant 60$	
$30 < t \leqslant 70$	
$30 < t \leqslant 80$	

(b) On the grid, draw the cumulative frequency graph for your table.

N 3 1 4 9 1 A 0 1 0 2 0

(1)

Leave blank 13. (a) Complete the table of values for $y = x + \frac{1}{x^2}$ 1.5 3 0.5 1 2 4 5 x 2 2.3 5.0 y (2) (b) On the grid, draw the graph of $y = x + \frac{1}{x^2}$ for $0.5 \le x \le 5$ y 6 4 2 0 1 2 3 4 5 х (2)

12

$ \begin{vmatrix} 1 \\ 1$		Turn	13 over
	(10tal 4 marks)		
	(2) (Total 4 marks)	Q	14
(b) Simplify $(2ab^2)^3$			
	(2)		
14. (a) Factorise completely $9ab - 12b^2$			
	(Total 6 marks)		
	x =(2)	Q	13
Give your estimate correct to 1 decimal place.			
$x + \frac{1}{x^2} = k$			
(ii) Use your graph to find an estimate for another solution of the e	quation		
	<i>k</i> =		
(i) Find the value of k .			
(c) $x = 1$ is a solution of the equation $x + \frac{1}{x^2} = k$ where k is a number	Γ.		ыапк
		ļ	Leave

	Leave blank
7 of the counters are red and 2 of the counters are white.	
Ajit takes at random two counters from the bag without replacement.	
(a) Calculate the probability that the two counters are red.	
(2)	
(b) Calculate the probability that the two counters have different colours.	
(3)	015
(Jotal 5 marks)	

N 3

491A01

5

15

17	. (a) Convert the recurring decimal 0.7^{\bullet} to a fraction.	Leave blank
	(2)	
	0.0 <i>y</i> is a recurring decimal. <i>y</i> is a whole number such that $1 \le y \le 9$	
	(b) (i) Write the recurring decimal 0.0°_y as a fraction.	
	 (ii) 0.1[•] is also a recurring decimal. Using your answer to part (i), or otherwise, convert the recurring decimal 0.1[•] to a fraction. Give your answer as simply as possible. 	
	(3)	017
	(Total 5 marks)	
	(Total S marks)	
18. Simplify fully
$$\frac{2}{x+2} + \frac{x}{x^2+5x+6}$$
 Q18

 (Itotal 5 marks)

 (Itotal 5 marks)

Leave blank

Diagram **NOT** accurately drawn

AB is a chord of a circle, centre *O*. *ACB* is an arc of the circle. OA = OB = 6.7 cm. Angle $AOB = 45^{\circ}$.

19.

Calculate the area of the shaded segment. Give your answer correct to 3 significant figures.

cm ² (Total 5 marks)	Q19

N 3 1 4 9 1 A 0 1 9 2 0

November 2008 IGCSE 4400 Maths Mark Scheme - Paper 3H

1. 11.7 2 M1 for 11.7 or 6.5	
6.5 1.8 A1 Accept ⁹ etc	
Accept $\frac{1}{5}$ etc	Total 2 marks

2.	(a)			7(<i>p</i> -3)	1	B1	сао		
	(b)	4x + 20 seen	or $x + 5 = 3$		3	M1	for 4x + 20 seen	or M2 for	
		4x = 12 - 20				M1	for 4x = 12 - 20	x + 5 = 3	
							or		
							for 4x = 12 – 5		
							following $4x + 5 =$		
							12		
				-2		A1			
									Total 4 marks

(Q	Working	Answer	Mark		Notes
3.	(a)	1×10+2×9+3×3+4×17+5×11 or 10+18+9+68+55 or 160		3	M1	for at least 3 correct products and summing them
		<u>"160"</u> 50			M1	(dep) for division by 50
			3.2		A1	Accept 3 if $\frac{160}{50}$ seen
	(b)(i)		17 50	3	B1	Accept 0.34 or 34%
	(ii)	$\frac{10+3}{50} \text{ or } \frac{10}{50} + \frac{3}{50}$			M1	
			13 50		A1	Accept 0.26 or 26%
	(C)	'No' ticked and eg The scores likely. 4	are not equally 4 is most likely.	1	B1	
						Total 7 marks

4. ((a)	translation	2	B1	Accept translated, translate etc	
		7 to the left and 1 down or $\begin{pmatrix} -7 \\ -1 \end{pmatrix}$		B1		These marks are independent but award no marks if the answer is not a single
	(b)	rotation	3	B1	Accept rotated, rotate etc	transformation
		90 °		B1	Accept quarter turn Accept 270°clockwise	
		(0, 0)		B1	Accept origin, O	
						Total 5 marks

Q	Working	Answer	Mark		Notes	
5. (a)	35 100 (2		3	M1	M2 for	
	$\frac{100}{100} \times 180 \text{ or } 63$				<u>65</u> × 180	
	180 - "63"			M1	dep 100 ~ 100	
		117		A1	cao	
(b)	$\frac{84}{100}$ or $84 \times \frac{100}{100}$		3	M2	for $\frac{84}{100}$ or $84 \times \frac{100}{100}$	
	0.35 35				0.35 35	
					$^{\text{M1 for}}$ 84 or 2.4	
					$\frac{1}{35}$ 01 2.4	
		240		A1		
(C)	442 100		3	M2	442 100	
	$\frac{1}{0.65}$ or $\frac{442 \times -65}{65}$				for $\frac{1}{0.65}$ or $\frac{442 \times -65}{65}$	
					442 or $6.8 or 65% = 442$	
					$\frac{100}{65}$	
		680		A1	cao	
						Total 9 marks

6.	$\pi \times r^2 \times 7.6$		3	M2	if $r = \frac{4.3}{2}$ or 2.15 (M1 if $r = 4.3$ may be implied by
					answer rounding to 441)
		110		A1	for answer rounding to 110
					$(\pi \rightarrow 110.367 \dots 3.14 \rightarrow 110.311 \dots$
					Total 3 marks

Q	Working	Answer	Mark	Notes
7.	$\frac{\frac{2}{5} \times \frac{7}{4}}{\text{or}}$ $\frac{\frac{14}{35} \div \frac{20}{35}}{\frac{1}{35}}$		3	B2 for $\frac{2}{5} \times \frac{7}{4}$ (B1 for inverting second fraction ie $\frac{7}{4}$) or B1 for 2 fractions with a denominator of 35 etc B1 for correct numerators
	$\frac{14}{20}$			B1 eg for $\frac{14}{20}$ oe or correct cancelling
				Total 3 marks

8.	(a)(i)		p ⁶	2	B1	сао	
	(ii)		q ⁵		B1	сао	
	(b)	12x - 3 - 8x + 12		2	M1	for 3 correct terms	
			4x + 9		A1	сао	
	(C)	$y^2 + 5y + 3y + 15$		2	M1	for 3 correct terms or y ² + 8y + c or + 8y + 15	
			$y^2 + 8y + 15$		A1	CaO	
							Total 6 marks

Q	Working	Answer	Mark	Notes
9.	$\cos x^\circ = \frac{5.4}{8.7}$ or 0.6206		3	M1 for cos A1 for $\frac{5.4}{8.7}$ or 0.6206 or 0.6206 or M1 for sin and $\frac{\sqrt{"46.53"}}{8.7}$ following correct Pythagoras and A1 for value which rounds to 0.78 or M1 for tan and $\frac{\sqrt{"46.53"}}{5.4}$ following correct Pythagoras and A1 for value which rounds to 1.26
		51.6		A1 for answer rounding to 51.6
				Total 3 marks

Q	Working	Answer	Mark		Notes
10. (a)		(2, 7)	2	B2	B1 for 2 B1 for 7
(b)	eg $\frac{13-1}{5-(-1)}$ or $\frac{12}{6}$ or $\frac{6}{3}$		4	M1	for clear attempt to use <u>vertical difference</u> horizontal difference
	2			A1	
		y = 2x + 7		B2	for $y = 2x + 7$ or $y = "2" x + 7$
		or			B1 for $y = 2x + c$
		y ="2" x + 7			or for $y = 2^{\circ}x + c$ where $c \neq 7$
					or for $2x + 7$, "2" $x + 7$,
					L = 2x + 7, $L = "2" x + 7$ etc
					ft from their "2" only if it supported by working such
					as a fraction or numbers indicated on a diagram, even though it may not have gained M1
					SC If no other marks scored, award B1 for
					y = mx + 7 for any m inc $m = 1$
					Total 6 marks

	Q	Working	Answer	Mark		Notes
	()					
11.	(a)	4	10 19 33 54	1	B1	CaO
	(b)		Points	2	B1	Allow $\pm \frac{1}{2}$ sq ft from sensible table
			Curve		B1	or line segments (dep on 4 pts correct or ft correctly or 5 ordinates from (a) plotted correctly and consistently within intervals but not above end points)
	(c)	27 (or 27½) indicated on graph or stated		2	M1	for 27 (or $27\frac{1}{2}$) indicated on graph or stated
			≈ 66		A1	ft from sensible graph
						Total 5 marks

Q	Working	Answer	Mark	Notes
12. (a)	$\frac{10}{6}$ oe or $\frac{6}{10}$ oe seen		3	B1 for $\frac{10}{6}$ oe (1.666) or $\frac{6}{10}$ oe (0.6) or $\frac{2}{3}$ (0.666)
	5.1× $\frac{10}{6}$ or 5.1÷ $\frac{6}{10}$ or 8.5			M1 for $5.1 \times \frac{10}{6}$ or $5.1 \div \frac{6}{10}$ or $5.1 \times \frac{2}{3}$ or 8.5
		3.4		A1 cao
(b)	(scale factor) ² eg $\left(\frac{6}{10}\right)^2$ or $\frac{36}{100}$ or $\left(\frac{10}{6}\right)^2$ or $\frac{100}{36}$		3	M1 M2 for $\frac{\frac{1}{2} \times 6 \times 5.1 \sin \theta}{\frac{1}{2} \times (10 + 6) \times 3.4 \sin \theta}$ or $\frac{\frac{1}{2} \times 6 \times 5.1 \sin \theta}{\frac{1}{2} \times 6 \times 5.1 \sin \theta}$
	eg 100 - 36, 64, $1 - \frac{36}{100}$, $\frac{64}{100}$			M1 $\frac{1}{2} \times 10 \times 8.5 \sin \theta - \frac{1}{2} \times 0 \times 5.1 \sin \theta$
		$\frac{9}{16}$ oe		A1
				Total 6 marks

Q	Working	Answer	Mark		Notes
13 . (a)	4.5	1.9 3.1 4.1	2	B2	for all correct (B1 for 2 or 3 correct)
(b)		Points	2	B1	Allow $\pm \frac{1}{2}$ sq ft from table if at least B1 scored in (a)
		Curve		B1	ft from their points if at least 5 points are correct or ft correctly
(c)(i)		2	2	B1	Cao
(ii)		1.6 or 1.7		B1	for answer which rounds to 1.6 or 1.7 ft from curve if B1 scored for curve in (b) Condone >1 dp
					Total 6 marks

					Total 4 marks
(b)	8a ³ b ⁶	2	B1	B1 for 8 B1 for a^3b^6	
				or for two factors one of which is $3b$ or $(3a - 4b)$ and the other is linear	
14. (a)	3b(3a - 4b)	2	B2	B1 for 3(3 <i>ab</i> – 4 <i>b</i> ²) or <i>b</i> (9 <i>a</i> – 12 <i>b</i>)	

Q	Working	Answer	Mark	Notes
15. (a)	$\frac{7}{9} \times \frac{6}{8}$		2	M1
		$\frac{42}{72}$ oe		A1 for $\frac{42}{72}$ oe inc $\frac{7}{12}$
(b)	$\frac{7}{9} \times \frac{2}{8} + \frac{2}{9} \times \frac{7}{8}$		3	M1for one of correct productsor M2 for $1-(a) - \frac{2}{9} \times \frac{1}{8}$ M1 for $\frac{7}{9} \times \frac{2}{9}$ M1 $or \frac{2}{9} \times \frac{2}{8}$ $or \frac{2}{9} \times \frac{7}{9}$ M1 $or \frac{2}{9} \times \frac{7}{8}$ M1 for $\frac{7}{9} \times \frac{2}{9} + \frac{2}{9} \times \frac{7}{9}$ M1 $or \frac{2}{9} \times \frac{7}{8}$ $\frac{7}{9} \times \frac{2}{9} + \frac{2}{9} \times \frac{7}{9}$ for sum of both correct products $\frac{7}{9} \times \frac{2}{9} + \frac{2}{9} \times \frac{7}{9}$
		$\frac{28}{72}$ oe		A1 for $\frac{28}{72}$ oe inc $\frac{7}{18}$
				Total 5 marks

16.	(a)(i)	54	2	B1	
	(ii)	angle between chord & tangent		B1	Accept 'alternate segment'
		= angle in alternate segment			
	(b)	angle <i>BCD</i> = 90°	2	B1	
		angle in a semicircle is a right angle		B1	Accept if 'semicircle' seen
	(c)(i)	102	2	B1	
	(ii)	opposite angles of a cyclic quadrilateral		B1	Accept if 'opposite' and 'cyclic' seen
		are supplementary			('Alternate segment' is an alternative)
					Total 6 marks

Q	Working	Answer	Mark	Notes
17. (a)	10x – 7 Ż		2	M1 Accept 100x - 77 Ż
		$\frac{7}{9}$ oe		A1
(b)(i)		<u>y</u> <u>y</u> 90	3	B1
(ii)	eg $9d = 1 + \frac{y-1}{10}$ or $90d = 10 + y - 1$ or $90d = y + 9$ or $\frac{10+y-1}{90}$ or $0.1 + 0.0\dot{y}$			M1 for equation which would give a correct answer or for an expression which, if simplified would give a correct answer or for 0.1+0.0ý but not for 9d = 1.y - 1 or similar
		$\frac{9+y}{90}$ or $\frac{1}{10} + \frac{y}{90}$		A1 isw and award 2 marks if $\frac{9+y}{90}$ or $\frac{1}{10} + \frac{y}{90}$ seen
				Total 5 marks

Q	Working	Answer	Mark	Notes
18.	$\frac{2}{x+2} + \frac{x}{(x+2)(x+3)}$		5	B1 for factorising $x^2 + 5x + 6$
	$\frac{2(x+3)+x}{(x+2)(x+3)} \text{ or } \frac{2(x+3)}{(x+2)(x+3)} + \frac{1}{(x+2)(x+3)} + \frac{1}{(x+2)(x+3)}$ or $\frac{2(x^2+5x+6)+x(x+2)}{(x+2)(x^2+5x+6)}$	$\frac{x}{2)(x+3)}$		B1 for correct single fraction even if unsimplified or for correct sum of two fractions with the same denominator ft from incorrect factorisation
	$\frac{2x+6+x}{(x+2)(x+3)} = \frac{3x+6}{(x+2)(x+3)}$ or $\frac{2x+6+x}{x^2+5x+6} = \frac{3x+6}{x^2+5x+6}$			B1 for $\frac{2x+6+x}{(x+2)(x+3)}$ or $\frac{2x+6+x}{x^2+5x+6}$
	$\frac{3(x+2)}{(x+2)(x+3)}$			B1
		$\frac{3}{x+3}$		B1 cao
				SC if no denominator, award 3^{rd} B1 for $2x + 6 + x$ and 4^{th} B1 for $3(x + 2)$
				Total 5 marks

Q	Working	Answer	Mark	Notes
19.	$\frac{45}{360} \times \pi \times 6.7^2 - \frac{1}{2} \times 6.7^2 \times \sin 45^\circ$		5	M1 for $\frac{45}{360}$ oe
				M1 for $\pi \times 6.7^2$
				or value which rounds to 141 seen
				M1 for completely correct method of finding the area of
				triangle OAB
				eg $\frac{1}{2} \times 6.7^2 \times \sin 45^\circ$
				or $6.7 \times \sin 22.5^\circ \times 6.7 \times \cos 22.5^\circ$
	17.628 (or 17.619) – 15.871			A1 for either area correctly evaluated rounded or truncated to 1 dp
		1.76		A1 for answer rounding to 1.76 if π key used (π
		or 1.75		→1.7572)
				or for answer rounding to 1.75 if
				π = 3.14 used (3.14 \rightarrow 1.7483)
				Total 5 marks

Q	Working	Answer	Mark	Notes
20.	eg $r^{2} + 9 = (r + 2)^{2}$ $r^{2} + 3^{2} = (r + 2)^{2}$		5	M2 for correct use of Pythagoras' Rule M1 for $r^2 + 3^2$ or $r^2 + 9$ or $(r + 2)^2$
	$r = \sqrt{(r+2)^2 - 9}$ $r+2 = \sqrt{r^2 + 9}$			
	$r^2 + 9 = r^2 + 4r + 4$			B1
	4r = 5			M1
		$1\frac{1}{4}$ or 1.25		A1 Accept $\frac{5}{4}$
				Total 5 marks

4400/4H

London Examinations IGCSE

Mathematics

Paper 4H

Higher Tier

Wednesday 12 November 2008 - Morning

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Without sufficient working, correct answers may be awarded no marks.

You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 22 questions in this question paper. The total mark for this paper is 100. There are 24 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

Turn over edexcel

Answer ALL TWENTY TWO questions	Leave blank
Write your enswers in the spaces provided	
write your answers in the spaces provided.	
You must write down all the stages in your working.	
 The diagram shows a shape, <i>PQRSTU</i>. All the corners are right angles. The lengths of four of the sides are given in terms of <i>a</i> and <i>b</i>. 	
$ \begin{array}{c} P & Q \\ & b & a-b \\ R & & 3a \\ U & & 3a+2b \\ \end{array} $	
Find an expression, in terms of a and b, for	
(i) <i>PU</i> ,	
(ii) <i>PQ</i> .	
	Q1
(Total 3 marks)	
	3

_

2.	(a)	Philip and Nikos share some money in the ratio 3:4 Nikos receives £24 Work out how much Philip receives.		Leave blank
	(b)	James and Suki share £40 in the ratio 3:5 Work out how much Suki receives.	£(2)	
			£(2) (Total 4 marks)	Q2

4.	A train travels 165 km. Its average speed for the journey is 60 km/h. Work out the time that this journey takes. Give your answer in hours and minutes.	Leave blank
	hours minutes	Q4
	(Total 3 marks)	
5.	When Peter goes to work, he can be early or on time or late. The probability that he will be early is 0.2 The probability that he will be late is 0.1 (a) Work out the probability that he will be on time. (2) (b) Peter will go to work 20 times next month. Work out an estimate for the number of times he will be early next month.	
	(2)	Q5
	(Total 4 marks)	

6.	(a)	Multiply out $5(x-2)$	Leave blank
	(b)	(2) Solve the equation $\frac{x}{4} + 3 = 10$ You must show sufficient working.	
	(c)	$x = \dots $	
			Q6
		(Total 6 marks)	
		T	7 urn over

N 3 1 4 9 5 A 0 8 2 4

9.	$\mathcal{E} =$ A = B =	{Positive integers less than 11} {Multiples of 3} {Multiples of 2}	Leave blank
	(a)	List the members of	
		(i) <i>A</i> ,	
		(ii) <i>A</i> ∪ <i>B</i> .	
		(3)	
	(b)	$\mathcal{E} = \{ \text{Students in class 12Y} \}$ $P = \{ \text{Students who study Mathematics} \}$ $Q = \{ \text{Students who study History} \}$	
		(i) Describe the members of $P \cap Q$.	
		(ii) <i>R</i> is also a set of students in class 12Y. $P \cap R = \emptyset$ Use this information to write a statement about the students in set <i>R</i> .	
		(3) (Total 6 marks)	Q9
10		$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 $	

	Leav blan	/e k
10. Express 132 as the product of its prime factors.		
	Q10	
(Total 3 marks)		
	11	_

N 3 1 4 9 5 A 0 1 4 2 4

Turn over

15. Solve the simultaneous equations

5x + 4y = 3x - 2y = 2

You must show sufficient working.

x = Q15 *y* = (Total 3 marks)

Leave blank

(2)	
(2)	
(2)	
(b) Factorise $4y^2 - 9$	
(2) Q1 [*]	7
(Total 4 marks))
18. (a) Find the value of $(9^{\frac{1}{2}})^4$	
(1)	
(b) Express 5^{20} as a power of 25	
(2)	
(c) Express $\sqrt{8}$ as a power of 2	
(2) Q18	8
(Total 5 marks)	

20 (a)	Differentiate with respect to r	Leave blank
20. (a)	(i) $2x^2 = x$	
	(1) $5x^2 - x$	
	(ii) $\frac{1}{x}$	
(b)	Find the coordinates of the points on the curve $y = x^3$ where the gradient is 12	
	()	
	() (3)	Q20
	(Total 7 marks)	
• •		
Leave blank

.....

.....

a =

(1)

(1)

(1)

21. The function f is defined as

$$f(x) = \frac{1}{x+3}$$

(a) Find the value of f(2)

(b) State which value(s) of *x* must be excluded from the domain of f.

(d) The function g is defined as

g(x) = x + 2

Express the function gf in the form $gf(x) = \dots$. Give your answer as a single algebraic fraction in its simplest form.

gf(x) =(2)

(Total 5 marks)

Turn over

Q21

November 2008 IGCSE 4400 Maths Mark Scheme - Paper 4H

Q	Working	Answer	Mark	Notes
1. (i)		3a + b	1	B1 oe
(ii)		2a + 3b	2	B2 B1 each term or if unsimplified: 3a+2b - a + b or 3a+2b - (a - b): B2 3a+2b - a - b: B1 not ISW
				Total 3 mark

2	(a)	24 ÷ 4 x 3 oe			M1	M1 for 24÷4 or 24×3 or 3÷4
			18	2	A1	
	(b)	40 ÷ 8 x 5 oe			M1	M1 8 (3+5 or used in 40/8)
			25	2	A1	
						Total 4 marks

3.	(a)	0.5 x 1.5 x 1.2			M1	or 0.9
		triangle + 2 x 1.5			M1	2×1.5 + or 3.2×1.5
			3.9	3	A1	
	(b)	"3.9" / 20 or "3.9" ×0.05			M1	or 1000 ÷ 20
		x 1000			M1dep	x "3.9"
						50 x"3.9" or 1000÷(20/"3.9") M2
						SC: 100÷(20/"3.9") M1
			195	3	A1f	
						Total 6 marks

Q	Working	Answer	Mark		N	otes	
4.	165 ÷ 60 =2.75	2 h 45 m	3	M1 A1 A1	1 km/min 165 mins		
						То	tal 3 marks

5.	(a)	1 - (0.2 + 0.1)			M1	
			0.7	2	A1	oe
	(b)	0.2 x 20			M1	or ⁴ / ₂₀ oe
			4	2	A1	or 4 out of 20
						Total 4 marks

6.	(a)		5x - 10	2	B2	B1 for 5x or 5×x; B1 for - 10 or + -10 ignore "x = 2" but subseq incorrect wking: - B1
	(b)	$x/_4 = 10 - 3$ or $x + 4 \times 3 = 4 \times 10$			M1	oe
			28	2	A1	
	(C)	5 <i>x</i> > 8			M1	condone "=" only if ans "x > 1.6"
			<i>x</i> > 1.6	2	A1	"x > 1.6" but just "> 1.6" on line: M1A1
						"x>1.6" but "1.6" or "x=1.6" on line:
						M1A0
						allow <u>></u>
						Total 6 marks

Q	Working	Answer	Mark		Notes	
7.	$4^2 + 6^2$ (= 52) $\sqrt[3]{52"}$ or $2\sqrt[3]{13}$	7.21	3	M1 M1 dep A1	sin(tan ⁻¹ (⁴ / ₆)) = ⁴ / _h h = ⁴ / sin(tan ⁻¹ (⁴ / ₆))	Total 3 marks

8.	A: travelling at a steady speed		B1	
	B: not moving		B1	
	C: speed is increasing	3	B1	
				Total 3 marks

9 (a)(i)	3, 6, 9	1	B1	
(ii)	2, 3, 4, 6,	2	B2	Any order
	8, 9, 10			One omission or extra: B1
	In (b)(i) & (ii), ansv	wers must	t refer to	o context, not just sets
(b)(i)	(Students who study) maths and history		B1	or "study both" allow maths + history
	in 12Y	2	B1	indep
(ii)	(They) don't study maths	1	B1	or No students in <i>R</i> study maths
				No students who study maths are in R
				Not: They don't study maths or history
				Total 6 marks

Q	Working	Answer	Mark	Notes
10.	Product of \geq 3 factors, of which 2 are from {2, 2, 3, 11}. Can be implied by factor tree or repeated			
	2, 2, 3, 11	2 × 2 × 3 × 11	3	M1 M1 A1 or $2^2 \times 3 \times 11$
				Total 3 marks

11.	(a)		$P(T) = \frac{1}{3}$		B1		
			correct		B1		
			structure	3	B1		
			all probs &				
			labels				
			correct				
	(b)	$^{2}/_{3} \times ^{2}/_{3}$			M1		
			⁴ / ₉ oe	2	A1	0.44	
	(C)	$(^{2}/_{3})^{2}$ or (b) or $^{2}/_{3}x^{1}/_{3}$			M1		
		$\frac{2}{3}x^{1}/3x^{2} + (\frac{2}{3})^{2}$ or +(b)			M1	$1 - (1/3)^2 M2$	
			⁸ / ₉ oe	3	A1	0.89, allow 0.88	
							Total 8 marks

Q	Working	Answer	Mark	Notes		
12. (a)(i)		11	1	B1		
(ii)		ab	1	B1		
(b)		1.44 x 10 ^{<i>p</i>+ <i>q</i>}	2	B2	B1 each for 1.44 and <i>p</i> + <i>q</i> + 1	
						Total 4 marks

13.	(a)	$\frac{-2 \pm \sqrt{2^2 - 4x(-1)}}{2}$			M1	allow 4×-1
		2				
		$-2 \pm \sqrt{8}$ or better			A1	or -1 ± √2
		2				
			x = -2.41 or	3	A1	
			0.414			
	(b)	$2 = 3(y + 4)$ or $y + 4 = \frac{2}{3}$			M1	
			$y = -3^{1}/_{3}$	2	A1	oe
						Total 5 marks

14.	(a)	$^{6}/_{h} = \cos 32$ oe			M1	$(6\tan 32)^2 + 6^2$ or $3.75^2 + 6^2$ (= 50.056)
		$h = {}^{6}/_{\cos 32}$			M1	√"50.056"
			7.08	3	A1	allow 7.07 to 7.08
	(b)	1/2 x 3 x 7 x sin115			M2	or $\frac{1}{2} \times 3 \times 7 \times \sin(\text{top angle})$ M1
			9.52	3	A1	
						Total 6 marks

Q	Working	Answer	Mark		Notes	
15.	2x - 4y = 4 or x = 2y + 2 or simila	x = 1 $y = -\frac{1}{2}$ oe	3	M1 A1 A1	correctly equate coeffs of <i>x</i> or <i>y</i> or make <i>x</i> or <i>y</i> the subject	
						Total 3 marks

16.	(1 sq reps) 120 ÷ 6 (=20)			M1	(f.d. per g) =	
	or 6 squs reps 120				¹ / ₃ ×120÷20 or ¹ / ₆ ×120 ÷10 (= 2)	
					or 2, (4, 6, 8) on fd axis	
	(0.5×6+2+2) × "20"			M1dep	5ד2"×6 + 10 × 2×"2" + 20 x"2"	$120 \times 7/6$: M2
	or "20" × 7					
		140	3	A1		
						Total 3 marks

17. (a)	(2x+3)(x+1)	2	B2	B1 if expansion wd give 2 correct terms
(b)	(2y + 3)(2y - 3)	2	B2	B1 if expansion wd give 2 correct terms
				Total 4 marks

18.	(a)		81	1	B1	
	(b)	$25 = 5^2$ or $5 = 25^{0.5}$ or $0.5x20$ oe			M1	not 5 × 5
			25 ¹⁰	2	A1	
	(C)	2^3 or $8^{1/3}$ or $8^{0.5}$ or $(\sqrt{2})^3$ or $\sqrt{2^3}$			M1	must involve power(s)
		or $2^{1/2} \times 2^{1/2} \times 2^{1/2}$ or 3×0.5				not $2\sqrt{2}$ not $\sqrt{2}\times\sqrt{2}\times\sqrt{2}$
			2 ^{1.5} oe	2	A1	
						Total 5 marks

Q	Working	Answer	Mark		Notes
19. (a)(i) (ii)		x + 2y oe x + y oe	1	B1 B1	eg -y + x + 2y ISW
(b)	$\vec{E}\vec{C} = 2y$ or $\vec{E}\vec{C} =$ $AE = DC$ so $\vec{E}\vec{C} =$ AE / / EC & AD DC	y = y y shown on diag = $\overline{A}\overline{D}$ eq & //	2	B1 B1	dep (ii) correct if no mks otherwise scored, $\overline{A}\overline{E} = \overline{D}\overline{C}$ B1
					Total 4 marks

20.	(a)(i)		6x - 1	2	B2	B1 for 6x or 6x ¹ B1 for -1
	(ii)		-x ⁻² or -1x ⁻²			B1 for x ⁻² oe
			or $-^{1}/x^{2}$	2	B2	-B1 for incorrect re-writing eg $-^{1}/x^{-2}$
	(b)	3x ²			B1	
		$3x^{2} = 12$			M1	
			(-2, -8) (2, 8)	3	A1	
						Total 7 marks

21. (a)		¹ / ₅ oe	1	B1	
(b)		-3	1	B1	or $x \neq -3$ or f(-3) or $x = -3$
(C)		7	1	B1	
(d)	$^{1}/_{x+3} + 2$			M1	
		(2x+7)/(x+3)	2	A1	
					Total 5 marks

Q		Working	Answer	Mark	Notes		
22.	(a)(i)		sin x	1	B1	not sinx = $^{BM}/_1$ not x = sin ⁻¹ BM	
	(ii)		2sin x	1	B1		
	(b)	2 - 2cos2x		1	B1	oe eg 1^2 + 1^2 - 2 × 1 × 1 × cos2x not ISW	
	(C)	$(2\sin x)^2 = 2 - 2\cos(2x)$ oe			M1		
		$2(\sin x)^2 = 1 - \cos(2x)$			A1	or 2 $\cos(2x) = 2 - 4(\sin x)^2$ not ISW	
			$(\cos(2x) = 1-$	2			
			$2(\sin x)^2$				
						Total 5 marks	

4400/3H

London Examinations IGCSE

Mathematics

Paper 3H

Higher Tier

Monday 18 May 2009 – Afternoon

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Without sufficient working, correct answers may be awarded no marks.

You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 21 questions in this question paper. The total mark for this paper is 100. There are 24 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited.

edexcel

Turn over

Answer ALL TWENTY ONE questions.	Leave blank
Write your answers in the snaces provided	
write your answers in the spaces provided.	
You must write down all stages in your working.	
 Last year in Mathstown High School, the ratio of the number of candidates for IGCSE mathematics to the number of candidates for IGCSE biology was 5 : 2 The number of candidates for IGCSE mathematics was 80 (a) Work out the number of candidates for IGCSE biology. 	
(2)	
The 80 mathematics candidates were divided between Foundation and Higher in the ratio 1 : 3	
(b) Work out the number of Foundation candidates.	
(2) (Total 4 marks)	Q1
 Omar travelled from Nairobi to Mombasa by train. The journey took 13 hours 15 minutes. The average speed was 40 km/h. 	
Work out the distance from Nairobi to Mombasa.	
km	Q2
(Total 3 marks)	
	3

5. (a) Factorise	$2p^2 + 7p$	Leave blank
	(2)	
(b) Solve 4 -	-5x = 2	
	<i>x</i> =	
(a) Simplify	(3) ³ × ⁶	
(c) Simplify		
(d) Expand a	(1) and simplify $3(4y+5) - 5(2y+3)$	
(u) Expand t	and simplify $S(4y + 5) = S(2y + 5)$	
	(2)	Q5
	(Total 8 marks)	
		5 Surn over
	N 3 4 0 2 2 A 0 5 2 4	

6. Brett's weekly pay is \$760 He spends \$266 on rent.			Leave
6. Breti's weekly pay is \$760 He spends \$266 as a percentage of \$760 			blank
He spends 3266 as a percentage of \$760	6.	Brett's weekly pay is \$760	
(a) Express \$266 as a percentage of \$760		He spends \$266 on rent.	
(a) Express 2200 as a percentage of 5700		(a) Express \$266 as a percentage of \$760	
		(a) Express \$200 as a percentage of \$700	
(2) Kazia spends \$204 a week on rent. \$204 is 30% of her weekly pay. (b) Work out her weekly pay. \$		0/	
(2) Kazia spends \$204 a week on rent. \$204 is 30% of her weekly pay. (b) Work out her weekly pay. (c) Q6 (Total 4 marks)			
Kazia spends \$204 a week on rent. \$204 is 30% of her weekly pay. (b) Work out her weekly pay. \$		(2)	
S204 is 30% of her weekly pay. (b) Work out her weekly pay. (c) Q6 (Total 4 marks)		Kazia spends \$204 a week on rent	
(b) Work out her weekly pay. (c) (2) (26) (Total 4 marks)		\$204 is 30% of her weekly pay.	
(b) Work out her weekly pay. S			
S		(b) Work out her weekly pay.	
\$			
S			
\$			
\$			
\$			
S			
(2) Q6 (Total 4 marks)		\$	
(Total 4 marks)		(2)	Q6
(Total 4 marks)			
		(Total 4 marks)	
			L

8.	$\mathscr{E} = \{ \text{positive whole numbers} \}$ $A = \{ \text{factors of 27} \}$ $B = \{ \text{factors of 9} \}$ $C = \{ \text{first four even numbers} \}$ (a) List the members of $A \cup B$.	Leave blank
	(2)	
	(b) (i) Is it true that $A \cap C = \emptyset$?	
	Tick (✓) the appropriate box. Yes No	
	(ii) Explain your answer.	
	(1)	
	(c) Complete the Venn Diagram to show the relationship between the sets A , B and C .	
	${\mathscr E}$	
	(2)	
	(Total 5 marks)	

9. B		Leave blank
9. Bigg accursts the circle with centre <i>O</i> and radius 4.7 cm. <i>A</i> is a point on a circle with centre <i>O</i> and radius 4.7 cm. <i>AB</i> is the tangent to the circle at <i>A</i> . <i>AB</i> = 5.9 cm. <i>OB</i> intersects the circle at <i>C</i> . Calculate the length of <i>BC</i> . Give your answer correct to 3 significant figures.	gram NOT arately drawn	
	cm	Q9
	(Total 4 marks)	
	Tu	9 rn over
N 3 4 0 2 2 A 0 9 2 4		

_

Leave blank

Distance (<i>d</i> km)	Frequency
$0 < d \leqslant 20$	8
$20 < d \leqslant 40$	24
$40 < d \leqslant 60$	5
$60 < d \leqslant 80$	2
$80 < d \leqslant 100$	1

10. The table shows information about the distances walked in a week by 40 people.

(a) Work out an estimate for the mean distance walked in a week by the 40 people.

..... km (4)

12. 1 astronomical unit = 150 million kilometres.(a) Write the number 150 million in standard form.
(a) Write the number 150 million in standard form.
(2)
The distance from Venus to the Sun is 108 million kilometres.
(b) Express 108 million kilometres in astronomical units
Give your answer in standard form.
astronomical units
$(2) \qquad
(Total 4 marks)

14. D. C.		Leave blank
	ram NOT rately drawn	
56° 47° T		
<i>A</i> <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are points on a circle. <i>ABE</i> and <i>DCE</i> are straight lines. <i>AT</i> is a tangent to the circle. <i>DCE</i> is parallel to <i>AT</i> .		
Angle $EAT = 47^{\circ}$. Angle $BAD = 56^{\circ}$. (a) (i) Find the size of angle <i>AED</i> .	٥	
(ii) Give a reason for your answer.		
(b) Find the size of angle <i>BCD</i> .	(2) °	
(c) (i) Find the size of angle <i>ADB</i> .	(1)	
(ii) Give a reason for your answer.		
	(2)	Q14
	(Total 5 marks)	
		15
	Tu	rn over

N 3 4 0 2 2 A 0 1 6 2 4

17. Here are five counters. Each counter has a number on it.	Leave blank
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Layla puts the five counters in a bag. She takes two counters at random from the bag without replacement.	
Calculate the probability that	
(i) both counters will have the number 3 on them,	
(ii) the sum of the numbers on the two counters will be 6	
	Q17
(Total 5 marks)	

	Tu	19 •n over
(То	tal 4 marks)	
		Q18
18. Simplify fully $\frac{4x^2 + 4x^2 + 4x^2}{50x^2 - 2}$		
$5x^2 + 14x - 3$		blank

		L b	eave lank
20.	Correct to 2 significant figures, the area of a square is 230 cm ² .		
	Calculate the lower bound for the perimeter of the square.		
	cm	Q	20
	(Total 3 marks)		
)

4400 Paper 3H Mark Scheme

Except for questions* where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method. [* Questions 5(b), 11(a), 13(a), 15(d), 20 and 21]

Trial and improvement methods for solving equations score no marks, even if they lead to a correct solution.

	Q	Working	Answer	Mark		Notes
1	a	$80 \times \frac{2}{5}, \ 2 \times \frac{80}{5}$		2	M1	Also award for 80 : 32 or 32 : 80
			32		A1	cao
	b	3 + 1 or 4		2	M1	Also award for 60 : 20 or 20 : 60
			20		A1	cao
						Total 4 marks

2	$40 \times 13.25 \text{ or } \frac{40}{60} \times 795 \text{ oe}$		3	M2	for 40×13.25 oe or $\frac{40}{60} \times 795$ oe M1 for $\frac{40}{60} \times (13 \times 60 + 15)$ or for $40 \times$ time eg 40×13.15 or 526 seen or 40×795 or 40×13
		530		A1	cao
					Total 3 marks

3	correct enlargement vertices (10,10) (15,10) (15,20)	3	B3	B2 for translation of correct shape or 2 vertices correct or for enlargement 1½, centre (0, 0) B1 for one side correct length Allow ½ square tolerance for both vertices and lengths of sides of triangle
				Total 3 marks

4	Examples of complete, correct explanations (i) 10 × 0.35 or 3.5 seen (may be in $\frac{3.5}{10}$) AND can't have half beads or there must be a whole number of (red) beads (ii) $3\frac{1}{2}$ red beads is impossible (iii) $\frac{7}{20}$ AND there are (only)10 beads or you need 20 beads (iv) The probability of any bead/a red bead must be tenths or must have 1 decimal place (v) Gives at least two examples that the probability of taking a red bead is $\frac{n}{10}$ where	2	B2	for a complete, correct explanation B1 for a partially correct explanation Examples of partially correct explanations (i) $\frac{1}{10}$ or 0.1 seen (ii) Gives one example that the probability of taking a red bead is $\frac{n}{10}$ where $2 \le n \le 9$ (iii) There would be 3.5 red beads. (iv) You can't have half beads (v) $10 \times 0.35 = 3.5$ (vi) $0.35 = \frac{7}{20}$ Treat statements like 'Don't know the number
	probability of taking a red bead is $\frac{n}{10}$ where $2 \le n \le 9$ e.g. states 0.3 and 0.4			Treat statements like 'Don't know the number of red beads' as irrelevant.
				Total 2 marks

5 a		<i>p</i> (<i>p</i> + 7)	2	B2	Also accept $(p + 0)(p + 7)$ for B2 B1 for factors which, when expanded and simplified, give two terms, one of which is correct. SC B1 for $p(p + 7p)$
b	5x = 2 or -5x = -2		3	M2	for $5x = 2$ or $-5x = -2$ or $\frac{5x}{5} = \frac{2}{5}$ M1 for $4 = 5x + 2$ or $5x = 4 - 2$ or $-5x = 2 - 4$ or $5x - 2 = 0$
		$\frac{2}{5}$ or 0.4		A1	for 4 correct B1 for 2 correct
с		t ⁹	1	B1	cao
d	12y + 15 – 10y – 15		2	M1	for 3 correct terms inc correct signs or for 12y + 15 - (10y + 15)
		2y		A1	Accept 2y + 0
					Total 8 marks

6	a	266 760 or 0.35		2	M1	
			35		A1	cao
	b	$\frac{204}{0.3}$ or $\frac{204}{30}$ or 6.8 or $\frac{204}{3}$ or 68		2	M1	
			680		A1	сао
						Total 4 marks

7	sin		3	M1	for sin	or M1 for cos and
	$\frac{3.6}{7.9}$ or 0.4556			A1	for <u>3.6</u> 7.9 or 0.4556	$\frac{\sqrt[4]{49.45''}}{7.9}$ following correct Pythagoras and A1 for 0.8901 or M1 for tan and $\frac{3.6}{\sqrt[4]{49.45''}}$ following correct Pythagoras and A1 for 0.5119
		27.1		A1	for answer rounding to 27.1	
						Total 3 marks

8	a		1 3 9 27	2	B2	-B1 for eeoo or any repetition
	b	Yes and gives an explanation which either specifically to the members of <i>A</i> and their properties eg All the factors of 27 are odd None of the factors of 27 are even. 2, 4, 6, 8 aren't factors of 27. or gives a general explanation which shows understanding of the statement eg <i>A</i> and <i>C</i> have no members in common. The intersection of <i>A</i> and <i>C</i> is empty.	refers	1	B1	for 'Yes' and an acceptable explanation Do not accept an explanation which merely lists, without comment, the members of both sets. Do not accept an explanation which includes the symbol ∩ with no indication of its meaning.
	с			2	B2	B1 for $B \subset A$ B1 for $A \cap C = \emptyset$ and $B \cap C = \emptyset$ Ignore any individual members shown on the diagram. Mark the layout which must be labelled
						Total 5 marks

9	$4.7^2 + 5.9^2$		4	M1	for squaring & adding
	= 22.09 + 34.81 = 56.9				
	$\sqrt{4.7^2 + 5.9^2}$			M1	(dep) for square root
	7.5432			A1	for value which rounds to 7.54
		2.84		A1	for answer which rounds to 2.84 (2.84320)
					Total 4 marks

10 a	10×8 + 30×24 + 50×5 + 70×2 + 90 × 1 or 80 + 720 + 250 + 140 + 90 or 1280		4	M1 M1	for finding at least three products $f \times x$ consistently within intervals (inc end points) and summing them (dep) for use of halfway values	
	<u>"1280"</u> <u>40</u>			M1	(dep on 1st M1) for division by 40 or division by their 8+24+5+2+1	
		32		A1	cao	
b	d = 25 indicated on graph		2	M1		
		12 or13		A1	Accept 12 - 13 inc	
C	10 and 30 or $10\frac{1}{4}$ and $30\frac{3}{4}$ indicated on cumulative frequency axis or stated		2	M1		
-		14 - 17 inc		A1		
					Total 8 marks	
11 a	10x-15y=45 10x+8y=22	8 <i>x</i> -12 <i>y</i> =36 15 <i>x</i> +12 <i>y</i> =33		4	M1	for coefficients of x or y the same followed by correct operation or for correct rearrangement of one equation followed by substitution in the other eg $5x + 4\left(\frac{2x-9}{3}\right) = 11$ For both approaches, condone one arithmetical error
------	-------------------------	---	-------	---	----	--
	y = -1	x = 3			A1	cao dep on M1
					M1	(dep on 1st M1) for substituting for other variable
			3 -1		A1	cao dep on all preceding marks
b			3, -1	1	B1	ft from (a)
						Total 5 marks

12 a	1.5 × 10 ⁸	2	M1	for 1.5 × 10 ^m
			A1	if <i>m</i> = 8
b	7.2 × 10 ⁻¹	2	M1	for 7.2 \times 10 ⁿ or 0.72 oe with digits 72
				eg 72 × 10^{-2}
			A1	if <i>n</i> = -1
				Total 4 marks

13	a	12L+16 = 70 or 8L + 4L = 54	6L + 8 = 35 or 4L + 2L = 27		3	M2	for correctly collecting <i>L</i> s or constants or both
		or 12 <i>L</i> = 54	or 6L = 27				M1 for correct substitution in given formula or in a correct rearrangement of the given formula in which <i>L</i> is not the subject
							eg $70=2(4L + 2\times4 + 2L)$ or $70=2(4L + 8 + 2L)$ or $35=4L+2\times4 + 2L$ or $35=4L+8 + 2L$ or $70 - 2\times2\times4 = 8L + 4L$ or $35 - 2\times4 = 4L + 2L$
				4.5 oe		A1	depends on M2
	a	alternative method					
		$L = \frac{A - 2HW}{2(W + H)}$ oe			3	M1	for making <i>L</i> the subject of the given formula
		$eg \frac{70-2\times2\times4}{2(4+2)}$				M1	for correct substitution into a correct expression for <i>L</i>
				4.5 oe		A1	depends on both method marks

13 b	A=2LW+2WH+2HL or $\frac{A}{2} = LW + WH + HL$	4	M1	for a correct equation following expansion or division by 2 May be implied by second M1
	A-2HL=2LW+2WH or $\frac{A}{2}-HL = LW + WH$		M1	for correct equation with W terms isolated
	A-2HL=2W(L+H) or $A-2HL=W(2L+2H)$ or $\frac{A}{2}-HL=W(L+H)$		M1	for correct equation with W as a factor
	$\frac{A-2HL}{2(L+H)}$ of	$\frac{A-2HL}{2L+2H} \text{ or } \frac{\frac{A}{2}-HL}{L+H} \text{ oe }$	A1	
				Total 7 marks

14 ai	47	2	B1	cao
ii	alternate angles		B1	Award this mark if 'alternate' appears
b	124	1	B1	сао
ci	47	2	B1	сао
ii	angle between a chord and a tangent		B1	Accept 'alternate segment'
	= angle in the alternate segment			
				Total 5 marks

15	а	12	1	B1	cao Do not accept (3, 12)
	b	0.2 3.6 6.1 or 6.2 or values roundin	g to these 2	B2	for all 3 correct solutions (B1 for 2 correct solutions or for 3 coordinates with correct solutions as <i>x</i> -coordinates)
	с	5 seen	2	M1	
		0		A1	cao
	d	tan drawn at (1, 16)	3	M1	tan or tan produced passes between points $(0.5, 11 \le y \le 13)$ and $(1.5, 19 \le y \le 21)$
		vertical difference horizontal diffrerence		M1	finds their $\frac{\text{vertical difference}}{\text{horizontal difference}}$ for two points on tan or finds the intercept of their tangent on the y-axis and substitutes $y = 16$, $x = 1$ and their c into $y = mx + c$ or finds their $\frac{\text{vertical difference}}{\text{horizontal difference}}$ for two points on curve, where one of the points has an x-coordinate between 0.5 and 1 inc and the other point has an x-coordinate between 1 and 1.5 inc
		6-10 inc		A1	dep on both M marks
					Total 8 marks

16 a	$\pi \times 4^2 + \pi \times 4 \times 9$		2	M1			
		163		A1	for ans rounding to 163 ($\pi \rightarrow$ 163.3628 3.14 \rightarrow 163.28 3.142 \rightarrow 163.384)		
b	$\frac{6}{4}$ or 1.5 oe or 6 : 4 oe or $\frac{4}{6}$ oe or 4 : 6 oe		2	M1	May be implied by 13.5 or 12.09 Also award for cube of any correct values or cube of correct ratios		
		3.375 oe		A1	for 3.375 or $3\frac{3}{8}$ or $\frac{27}{8}$ oe Accept 3.38 if M1 scored Do not award A1 if slant heights used as h in $V = \frac{1}{3}\pi r^2 h$		
					Total 4 marks		

17	i	$\frac{3}{5} \times \frac{2}{4}$		5	M1		Sample space method - award 2 marks for a correct answer, otherwise no marks	
			$\frac{6}{20}$ or $\frac{3}{10}$		A1			
	ii	$\frac{1}{5} \times \frac{1}{4} \times 2 + \frac{6}{20}$ "			M1	for $\frac{1}{5} \times \frac{1}{4}$	Award M0 M0 A0 for	$\frac{1}{5} + \frac{1}{5} = \frac{2}{5}$
		or $\frac{2}{5} \times \frac{1}{4} + \frac{6}{20}$ "				or $\frac{2}{5} \times \frac{1}{4}$	Sample space methor marks for a correct	od - award 3 answer,
					M1	for complete sum	otherwise no marks	
			8 or		A1			SC
			$\frac{2}{5}$ oe				M1 for $\frac{1}{5} \times \frac{1}{5}$ or $\frac{1}{25}$	
							M1 for $\frac{1}{5} \times \frac{1}{5} \times 2 + \text{their}(i)$	Sample space method - award 2 marks for $\frac{11}{25}$ otherwise no marks
								Total 5 marks

18	(5x-1)(x+3)		4	B1	for factorising numerator as $(5x - 1)(x + 3)$	
	$\frac{2(25x^2 - 1)}{\frac{(5x - 1)(x + 3)}{2(5x + 1)(5x - 1)}}$			B1 B1	for factorising denominator as $2(25x^2 - 1)$ for factorising $25x^2 - 1$ as $(5x + 1)(5x - 1)$	or B2 for factorising denominator as (5x - 1)(10x + 2) or (5x + 1)(10x - 2)
		$\frac{x+3}{2(5x+1)}$ or $\frac{x+3}{10x+2}$		B1		
						Total 4 marks

19	$2 \times 6 \sin 39^{\circ}$ or 2 × 6 cos51° or 6 ² + 6 ² - 2×6×6cos78° or $\frac{6 \sin 78^{\circ}}{\sin 51^{\circ}}$		6	M1	
	7.551			A1	for answer rounding to 7.55
	eg $\frac{78}{360} \times \pi \times 12$			M1	for $\frac{78}{360}$ oe inc 0.2166 rounded or truncated to at least 3 decimal places or for $\frac{360}{78}$ oe inc 4.6153 rounded or truncated to at least 3 decimal places
				M1	for $\pi \times 12$ or for $2\pi \times 6$ ($\pi \rightarrow 37.699 3.14 \rightarrow 37.68 3.142 \rightarrow 37.704$)
	8.16 - 8.17 inc oe inc $\frac{13\pi}{5}$, 2.6 π oe			A1	for 8.17 or better ($\pi \rightarrow 8.168$ 3.14 $\rightarrow 8.164$ 3.142 $\rightarrow 8.1692$)
		15.7		A1	for ans rounding to 15.7 ($\pi \rightarrow$ 15.7199 3.14 \rightarrow 15.7158 3.142 \rightarrow 15.7202)
					Total 6 marks

20	225 seen		3	B1		
	$\sqrt{225}$ or 15			B1	Award B1 for 15 only if 225 seen	
		60		B1	cao	
					Award only if preceding 2 marks scored	
					Total 3 mark	KS

21	$(x + 4)^{2} = x^{2} + (x + 6)^{2} - 2x(x + 6)\cos 60^{\circ}$ or cos 60° = $\frac{(x + 6)^{2} + x^{2} - (x + 4)^{2}}{2x(x + 6)}$		5 M1		
	$x^{2} + 4x + 4x + 16$ or $x^{2} + 8x + 16$ and $x^{2} + 6x + 6x + 36$ or $x^{2} + 12x + 36$		B1	dep on M1 for correct expansion of $(x + 4)^2$ and $(x + 6)^2$ in correct statement of Cosine Rule	Omitted brackets may be implied by correct subsequent working.
	$x^{2} + 8x + 16 = x^{2} + x^{2} + 12x + 36 - x^{2} - 6x$ or $x^{2} + 6x = x^{2} + 12x + 36 + x^{2} - x^{2} - 8x - 16$ oe		B1	for correctly dealing with cos 60° and obtaining a correct equation with no fractions and no brackets	
	2x = 20 oe		B1	for correct linear equation $e^{-2x} = -20$, $4x = 40$, $2x - 20 = -20$	e.g. 2x = 20 0
		10	A1	cao dep on all preceding mai	rks
					Total 10 marks

4400/4H

London Examinations IGCSE

Mathematics

Paper 4H

Higher Tier

Monday 1 June 2009 - Morning

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Without sufficient working, correct answers may be awarded no marks.

You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 22 questions in this question paper. The total mark for this paper is 100. There are 20 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited.

Turn over

	Answer ALL TWENTY TWO questions.	Leave blank
	Write your answers in the spaces provided.	
You	nust write down all the stages in your working.	
1. Show that $\frac{2}{3} \div \frac{5}{9} =$	$=1\frac{1}{5}$	
	(Total 3 marks)	Q1
 2. Angelou has x swee He eats 5 of these sy He puts all the swee (i) Nina has 3 time Nina has 39 sw Use this inform 	ts. weets. ets he has left into a bag. es as many sweets as the number that Angelou put into the bag. eets. ation to write down an equation in <i>x</i> .	
(ii) Solve your equa	ation to find the value of x . $x = \dots$ (Total 5 marks)	Q2
		3 Furn ove

3.	Work out the value of $\frac{a}{a}$	$\frac{(b+1)}{16}$ when a	= 6 an	.d <i>b</i> =	_9				Leave blank
								(Total 3 marks)	Q3
4.	The table gives informat	ion about the sh	ioe siz	es of	67 peo	ople.	10		
	Nun	ber of people	0 20	19	8	9 26	2		
									Q4
								('Iotal 2 marks)	

Leave blank

Diagram **NOT** accurately drawn

.....

(Total 4 marks)

(2)

(2)

Q6

6. The diagram shows a biased spinner, numbered 1, 2, 3 and 4

When the spinner is spun, the number on which it lands is the score.

The table shows the probabilities for three of the scores.

Score	Probability
1	0.3
2	0.1
3	0.4
4	

The spinner is spun once. Work out the probability that the score is

(a) 4

(b) an odd number.

	Leave
0 Solve $\frac{12-x}{x} = 7$	
9. Solve $\frac{1}{3} = 7$	
x =	Q9
(Total 3 marks)	
10. Express 132 as a product of its prime factors.	
	Q10
(Total 2 marks)	
(Total 5 marks)	

	Leave blank
11. Jagdeesh has to work out $\frac{84.2 \times \sqrt{38.2}}{41.6}$ without using a calculator.	
Use suitable approximations to work out an estimate for Jagdeesh's calculation. You must show all your working.	
	Q11
(Total 3 marks)	

H 3 4 0 2 3 A 0 1 2 2 0

17 A curve has equation $v = r^2 + 3r$		Leave blank
$(x - y) = \frac{dy}{dy}$		
(a) Find $\frac{dx}{dx}$		
	(2)	
(b) Find the gradient of the curve at the point where $x = -4$		
	(1)	
(c) The curve has a minimum point. Find the coordinates of this minimum point.		
1		
	(3)	Q17
	(Total 6 marks)	
		15

4400 Paper 4H Mark Scheme

Except for questions 9, 11, 21 (where the marking scheme states otherwise), unless clearly obtained by an incorrect method, a correct answer should be taken to imply a correct method.

Trial and improvement methods for solving equations score no marks, even if they lead to correct answers.

Q	Working	Answer	Mark		Notes
1	$^{2}/_{3} \times ^{9}/_{5}$			M2	M1 for inverting 2^{nd} fraction i.e. $\frac{9}{5}$
	6a / and 5a /				or
	and and ang and ang				9
	$^{6a}/_{9a} \div ^{5a}/_{9a}$			M2	correct numerators and intention to divide
		¹⁸ / ₁₅ or ⁶ / ₅	3	A1	any fraction equivalent to $1^{1}/_{5}$
				ļ	Do not allow decimal conversions
					Total 3 marks

2 i	3x -15 = 39 or 3(x - 5) = 39 or x-5=39/3			B3	do not accept x-5 =13 B2 for 3x - 5 = 39 if x-5 seen otherwise B1 B1 for x-5 seen B0 for x= 39/3 +5 oe
ii	3x = 54 or x - 5 = 13	18	5	M1 A1	ft from any linear equation ax+b=c a>1 b,c ≠ 0 ax= c-b or x=c/a - b/a 18 with no working for answer in i) or ii) gets M1 A1
					Total 5 marks

3	6 × (-9 + 1) or -8 seen			M1	allow 6 x -9 + 1
	-48 or -54+6			M1	Accept 6/(-2) or (3/8) x -8
		-3	3	A1	Total 3 marks

4	67 ÷ 2 or (67 +1) ÷ 2 oe			M1	attempt to find middle of cumulative frequency or listing of
					people.
		7	2	A1	cao look for mean (7.56) rounded down (M0 A0)
					Total 2 marks

5	a	2 x π x 40 oe			M1		
			251	2	A1	answer rounding to 251	
	b	8 x 10 or 80			M1		
		π x 3 ² (awrt 28.2 or 28.3)			M1		
		"8x10" - "π x 3 ² "			M1	dep on both M1's	
			51.7	4	A1	answer rounding to 51.7	
						Total 6	marks

6	а	1 - (0.3 + 0.1 + 0.4)			M1	
			0.2oe	2	A1	Look for answer in table if missing from answer line
	b	0.3 + 0.4			M1	
			0.7oe	2	A1	
						Total 4 marks

7 a	Correct <u>+</u> 2 mm	2	B2	B1 for any 2 vertices correct <u>+</u> 2 mm or translation of correct image	
b	Translation		B1	translate or translated	
	$\begin{pmatrix} -4\\5 \end{pmatrix}$	2	B1	or -4 in x dir'n, or 4 to left or 4 west (not backwards or across) AND 5 in y dir'n or 5 up or 5 north (not (-4,5) or vectors without brackets)	
		2			penalise contradictions
					Total 4 marks

8 a	5.1 ² + 3.2 ² (= 36.25) √"36.25"			M1 M1	M2 for 5.1/cos(tan ⁻¹⁻ (3.2/5.1)) or 3.2/sin(tan ⁻¹⁻ (3.2/5.1)) Must be complete methods
		6.02	3	A1	answer rounding to 6.02
b	tan selected			M1	$\sin 32^{\circ} = \frac{AB''}{6.5/\cos 32}$ or $AB''/\sin 32 = 6.5/\sin 58$
	6.5 x tan 32°			M1	$(AB =) \sin 32^{\circ} \times \frac{6.5}{\cos 32}$ or (AB=) sin 32 x 6.5 / sin 58
		4.06	3	A1	answer rounding to 4.06
					Total 6 marks

9	12 - x = 21 or 12-21=x or-x=21-			M2	or $[-x/_3 = 7 - \frac{12}{3}]$ or $[\frac{12}{3} - 7 = \frac{x}{3}]$
	12	-9	3	A1	(Answer only gains no marks)
					Total 3 marks

10	A product of 3 or more factors of which 2 are from 2,2,3,11				M1 can be implied from a factor tree or repeated division
	1,2,2,3,11 or 2,2,3,11			M2	M2 can be implied from a factor tree or repeated division
		2 x 2 x 3 x 11	3	A1	product must be stated (not dots for product)
					Total 3 marks

11	[⁸⁰ / ₄₀] or [⁸⁴ / ₄₂] √36 or 6	12	3	B1 B1 B1	dep on both previous B1's (Accept 10 only if ⁸⁰ / ₄₀ , 6 used) (Answer only gains no marks)
					Total 3 marks

12	a	$^{v}/_{h}$ in a correct Δ			M1	
			½ oe	2	A1	M1 A0 for 1/2 x
	b		y = "½"x + 2 oe	2	B2	B1 for "½"x + 2 or L= "½"x + 2
	с		$y = \frac{1}{2}x + c$	1	B1	c any number \neq 2 or letter or y = "0.5"x
						or a line parallel to their b)
						Total 5 marks

13	a		60	1	B1	
	b	$y_{7.5} = 4/5$ oe			M1	correct ratios or correct use of sf (0.8 or 1.25 or 1.5 or 2/3)
			6	2	A1	
	с	$\begin{bmatrix} z/_5 = 3/_4 \end{bmatrix}$ oe or $\begin{bmatrix} z/_{7.5} = 3/_{6} \end{bmatrix}$			M1	allow ft on their "6" or correct use of sf (0.8 or 1.25 etc)
			3.75	2	A1	cao
						Total 5 marks

14	a		1/4		B1	P(tail) on Ist throw
			binary tree structure		B1	
			all probs & labels correct	3	B1	
	b	$(''_{4}'' \times (''_{4})''_{4})''$			M1	ft their 2 tail branches
			¹ / ₁₆ or 0.0625	2	A1	cao
						Total 5 marks

15	a		3 <i>c</i> ⁷ <i>d</i> ⁵	2	B2	B1 for c^7 or d^5 Accept 3 x c^7 xd ⁵
	b		16x ¹² y ⁴	2	B2	B1 for 16 or x^{12} or y^4 Accept 16 x x^{12} x y^4
	С	(2(x-3)/x(x-3))	² / _×	2	M1 A1	either factorisation correct. Accept (x±0) (2±0) Accept $^{2\pm0}/_{x\pm0}$ Look for incorrect algebra
			X			Total 6 marks

16 a	(2x - 3)(x + 1)	2	B2	B1 for one correct factor or $(2x + 3)(x - 1)$ (integers only)
b	"1.5" and "-1"	1	B1	both req ^d ft (a) if 2 linear factors
				Total 3 marks

17	a		2x + 3	2	B2	B1 each term (accept $3x^0$)
	b		"-5"	1	B1	ft their $ax + b$ $(a, b \neq 0)$
	с	"2x + 3" = 0			M1	only ft their dy/dx , if $ax + b$ ($a, b \neq 0$)
		$x = -\frac{3}{2}$			A1	cao dependent on 2x+3=0
			$(-^{3}/_{2}, -^{9}/_{4})$ oe	3	A1	cao Answer dependent on 2x +3 =0 seen
						Total 6 marks

18	a		- x oe		1	B1	can be unsimplified
	b		x + y o		1	B1	can be unsimplified
	с	Unsimplified expression in t and y for PA or AP (either of ft from b) e.g.(AP=) "x+y"+y-½x or (PA=) ½x-y-"x-y"	terms of <i>x</i> correct or	0.5		B2	B1 Correct vector statement with at least 3 terms including AP or PA e.g.PA = PC + CA or AP = AC + CP can include x and/or y
				-0.5x-2y	3	B1	CaO
							Total 5 marks

19	a	⁸⁰ / ₁₅₀ x 15 or 4 x 2 (small squares) (freq den)			M1	M1 for any fd value in correct position and no errors or 1 large square=2.5 leaves or 1 small square=1/10 (leaf) oe
			8	2	A1	
	b	Freq 4-5 = 12 and (freq 5-6 = 6 or freq 5-9=24) 1/2 ×(freq 4-5 + freq 5-6) or (1/2 x freq 4-5 + 1/8 x freq		2	M1 M1	12 & 6 seen or 12 & 24 or 60 & 30 (small squares) dep e.g. (0.5 x 12) +(0.5 x 6) or (0.5 x12)+(1/8 x 24) or 1/10 x 90
		5-9)	9	3	A1	
						Total 5 marks

20	ai	<i>BM</i> = 1 or CM =1			B1	(can be marked on diagram) allow cosine rule method
	ii	$(AM^{2} =) 2^{2} - 1^{2} (= 3)$ (AM =) $\int (2^{2} - 1^{2}) (= 3)$	⁷³ /₂ or <i>∫</i> ³⁄₄	4	M1 M1 A1	(dependent on 1 line of Pythagoras or sine rule)
	b	$\binom{\sqrt{3}}{2}^{2} + \binom{1}{2}^{2}$ = $\frac{3}{4} + \frac{1}{4}$ oe		2	M1 A1	$(^{7}/_{2})^{2}$ Must be seen allow 0.75 + 0.25 if M1 gained
						Total 6 marks

allow one sign error	M1			$-3\pm\sqrt{3^2-4\times2\times(-1)}$	21 a
				2 × 2	
	M1			$-3\pm\sqrt{17}$	
				4	
both answers rounding to 0.281 & -1.78	A1	3	0.281 and -1.78		
(answer only gains no marks					
$\frac{2(x+1)}{x} - 1 = x + 1$ or $2 - \frac{x}{x} = x$	M1			$\frac{2(x+1)-x}{x} = 1$	b
x + 1	M1			x(x+1)	
				2(x+1)-x = x(x+1)	
correct gathering of terms	M1			x ² -2=0 oe	
answer rounding to ±1.41	A1	4	±√2 or ±1.41		
(answer only gains no marks					
Total 7 mark					

22	a	$x \ge 10^5 + 0.1y \ge 10^5 = z \ge 10^5$	<i>x</i> + 0.1 <i>y</i> oe	2	M1 A1	M1 for 0.1y or $(10^{x} \times 10^{4} + y \times 10^{4} = 10z \times 10^{4})$ or $(10x + y = 10z)$
	bi		7.5	1	B1	
	ii	0.75 x 10 ^{n-m} (= a x 10 ^p)	n - m -1	2	M1	0.75 and n-m seen (even in part i))
			// - /// - I	Ζ		Total 5 marks

Total 100 marks

4400/3H

London Examinations IGCSE

Mathematics

Paper 3H

Higher Tier

Thursday 5 November 2009 - Morning

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Without sufficient working, correct answers may be awarded no marks.

You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 25 questions in this question paper. The total mark for this paper is 100. There are 24 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited.

edexcel

Turn over

Answer ALL TWENTY FIVE questions.	Leave
Write your answers in the spaces provided.	
You must write down all the stages in your working.	
1. Show that $\frac{2}{2} + \frac{1}{5} = \frac{13}{15}$	
3 5 15	
(Total 2 marks)
2. Solve $8y - 9 = 5y + 3$	
	Q2
(Total 3 marks	
	3
I INNINII AINNI IIII AINNI IIIII IIIII IIII AINNI IIII AINNI IIII AINNI IIII AINNI IINII AINNI H 3 4 8 8 4 A 0 3 2 4	Turn over

Leave blank

4. In a survey of 36 families, the number of people in each family was recorded. The table shows the results.

Number of people in the family	Frequency
1	3
2	2
3	7
4	13
5	11

Work out the mean number of people in these 36 families.

		Q4
(Total 3 m	arks)	
		5

H 3 4 8 8 4 A 0 5 2 4

		Leave blank
5.	Cups cost x dollars each. Mugs cost $(x + 2)$ dollars each.	
	(a) Write down an expression, in terms of x , for the total cost of 12 cups and 6 mugs.	
	dollars	
	(2)	
	(b) The total cost of 12 cups and 6 mugs is 57 dollars.	
	Work out the cost of 1 cup.	
	dollars	05
	(2)	C
	(Total 4 marks)	

6	(2)	$S = \{1, 3, 5, 7\}$		Leave blank
0.	(a)	$T = \{2, 3, 7, 11\}$		
		How many members are there in $S \cup T$?		
			(1)	
	(b)	$U = \{3, 4, 5\}$		
		$U \cup V = \{1, 2, 3, 4, 5\}$		
		The set V has as few members as possible. List the members of the set V .		
			(1)	
	(c)	$A = \{Cats\}$ B = {Black animals}		
		Describe the members of $A \cap B$.		
			(1)	06
		(Total 3 m	arks)	
			Tu	7 rn over

Leave blank 8. James throws a biased dice once. The table shows all the possible scores and their probabilities. Probability Score 1 0.4 2 0.3 3 0.1 4 0.1 5 0.05 6 0.05 Find the probability that the score is more than 3 **Q8** (Total 2 marks) 9 H 3 4 8 8 4 A 0 9 2 4

	Country	Area (km ²)		
	Algeria	2.4×10^{6}		
	Botswana	6.0×10^{5}		
	Equatorial Guinea	2.8×10^4		
	Ethiopia	1.2×10^{6}		
	Malawi	1.2×10^{5}		
(a) Which of thes	e countries has the largest a	rea?	(1)	
			(1)	
(c) Work out the	total area of all five countrie	es.	(1)	
(c) Work out the Give your ans	total area of all five countries	es.	(1)	
(c) Work out the Give your ans	total area of all five countries wer in standard form.	25.	(1)	
(c) Work out the Give your ans	total area of all five countries swer in standard form.	es.	(1)	
(c) Work out the Give your ans	total area of all five countries wer in standard form.	es.	(1)	
(c) Work out the Give your ans	total area of all five countries wer in standard form.	ës.	(1) 	
(c) Work out the Give your ans	total area of all five countries wer in standard form.	25.	(1) km² (2)	
(c) Work out the Give your ans	total area of all five countries wer in standard form.	es.	(1) km ² (2) (Total 4 marks)	
(c) Work out the Give your ans	total area of all five countries wer in standard form.	25.	(1) km ² (2) (Total 4 marks)	
(c) Work out the Give your ans	total area of all five countries wer in standard form.	es.	(1) km ² (2) (Total 4 marks)	
(c) Work out the Give your ans	total area of all five countries wer in standard form.	25.	(1) km ² (2) (Total 4 marks)	

14. Solve the simultaneous equations		Leave blank
2r - 3v = 3		
3x - 5y = 3 $3x + 6y = 1$		
	<i>x</i> =	014
	$y = \dots$ (Total 2 marks)	
	(Total 5 marks)	
15. Jothi bought a car. Later, Jothi sold the car for £2125		
He made a loss of 15%. Work out the original price of the car.		
		01=
	£	
	(Total 3 marks)	

17. (a)	Factorise $x^2 - y^2$	Leave blank
(b)	(1) Factorise completely $(c + d)^2 - d^2$	
(c)	(2) Factorise $2w^2 + w - 3$	
	(2)	Q17
	(Total 5 marks)	

	17
x =	4 marks)
Diagram NO accurately dra	F iwn
18. In the diagram, a sector of a circle of radius 12 cm is shaded. The area of the sector is 112π cm ² . Calculate the value of x.	blank

		Leave blank
20.	Each time Jeni plays a computer game the probability that she will win is $\frac{2}{3}$	
	Jeni plays the computer game 3 times.	
	Calculate the probability that Jeni will win	
	(a) all 3 games,	
	(2)	
	(b) exactly 2 out of the 3 games.	
		020
	(Total 5 marks)	

Turn over

21. <i>t</i> is proportional to the square root of <i>d</i> .	Leav blan
t = 12 when $d = 4$	
(a) Find a formula for t in terms of d	
(a) Find a formula for t in terms of a .	
	(3)
(b) Calculate the value of t when $d = 9$	
<i>t</i> =	
	(2) Q21
(To	otal 5 marks)
20	

 23. In a race, Paula runs 25 laps of a track. Each lap of the track is 400 m, correct to the nearest metre. Paula's average speed is 5.0 m/s, correct to one decimal place. 	Leave blank
Give your answer in minutes and seconds, correct to the nearest second.	
	Q23
(Total 4 marks)	

November 2009 IGCSE Mathematics (4400) Mark Scheme - Paper 3H

Q	Working	Answer	Mark	Notes
1.	"x"/15 + "y"/15 or ((2x5)+(1x3))/(3x5)		2	B1 denominators common multiple of 15 or 10/15 or 3/15 (accept (2x5)/15 or (3x1)/15) B1 correct answer equivalent to 13/15
				Total 2 marks

2.	8y -5y = 3 +9			M1	correct gathering of terms
	3y = 12 or 3y-12=0			M1	(can imply Ist M1)
		4oe	3	A1	Answer only or embedded answer =M0A0
					Total 3 marks

3. (a)	a)	360 ÷ 8 (=45)	180 x 6/8 (=135)			M1
		(180 - "45") / 2	"135"÷2			M1 dep
				67.5	3	A1
(b))	360 ÷ 30	180-30=180(n-2)/n			M1
				12	2	A1
						Total 5 marks

4.	(1x3)+ (2x2)+(3x7)+(4x13)+(5x11)			M1 must see at least 3 correct products
	"135"÷ 36			M1 (dep)
		3.75	3	A1 accept 4 with working
				Total 3 marks

5.	(a)	12x + 6(x + 2) oe	18x +12	2	B2 B1 for 12x or 6(x + 2) penalise errors
	(b)	"a" = 57 18x + 12 =57 or 45 ÷ 18			M1ft "a"= linear term b $x + c$ (c, b $\neq 0$)
			2.5	2	A1 cao allow numerical methods
					Total 4 marks

	Q	Working	Answer	Mark		Notes	
6.	(a)		6	1	B1		
	(b)		1,2	1	B1		
	(C)		Black cats	1	B1	Cats that are black etc	
							Total 3 marks

7.	(a)	2 х п х30			M1
			188	2	A1 188(.495) awrt 188 or 189
	(b)	4.2^2 ((=17.6(4))			M1
		$\pi \times 2.1^2$ (= 13.8)			M1
		"4.2 ² " - "π x 2.1 ² "			M1 dep on both previous M1 marks
			3.79	4	A1 Accept awrt 3.78 or 3.79
					Total 6 marks

8.	0.1 + 0.05 + 0.05 or 1 - (0.4 + 0.3 + 0.1)			M1
		0.2	2	A1
				Total 2 marks

9.	(a)	2w - 6 +3w +15			M1	M1 for 3 correct terms (no isw)
			5w +9	2	A1	
	(b)	$x + 5 = 3 \times 9$			M1	
			22	2	A1	Answer only or embedded answer =M0A0
	(C)	5y < 13 - 7			M1	Must be an inequality
			y<6/50e	2	A1	
						Total 6 marks

10.	2 x (0.5 x 8 x 15) +(17 x 20) +(15 x 20) +(8 x 20)			M1 M1	1 correct face 60, 340, 300 or 160 All correct faces added 120 ± 2x60
	2 x 60 +340 + 300 + 160	920	3	A1	
					Total 3 marks

Q	Working	Answer	Mark	Notes
11.	P^2 = ab or p/ $\int b = \int a$	P²/b oe	2	M1 accept P^2 = a x b and p x p = a x b A1
				Total 2 marks

12.	(a)	$4^2 + 6^2$ (=52)				M1		
		√ <u>"52"</u>				M1 (dep)	
		V 52		7.21	3	A1	7.21(11) awrt 7.21	
	(b)	Alt. y/sin 90 = 5/sin 70 M1	cos 20 = 5/y			M1	cos selected	
		y = 5 / sin70 M1	y = 5/ cos 20			M1		
				5.32	3	A1	5.32088 awrt 5.32	
								Total 6 marks

13. (a)	Algeria	1	B1	Accept 2.4 x 10 ⁶
(b)	10	1	B1	Ten times etc
(C)	4.348 x 10 ⁶ or 4.35 x 10 ⁶	2	B2	B1 for digits 4348 or 4350000 or 4.3x 10 ⁶
				Total 4 marks

14.	2 lines where coeff of x or y are "equal"			M1 eg $4x - 6y = 6$ or $6x - 9y = 9$
				and $3x + 6y = 1$ and $6x + 12y = 2$
				and then add/subtract (condone 1 num. error)
		x=1, y=-1/3	3	subst.
				A1 A1 Answers alone =M0A0
				Total 3 marks

15.	2125 ÷ 0.85 oe			M2 M1 for 2125 ÷ 85 (=25) or 85%=2125 or 0.85 x "x" = 2125
		2500	3	A1 cao
				Total 3 marks

	Q	Working	Answer	Mark	Notes
16.	(a)	Read height at cf 100 or 100.5	54 to 56 inc	2	M1 A1
	(b)	200 - (178 to 182)	18 to 22 inc	2	M1 A1
					Total 4 marks

17.	(a)	(x - y)(x + y)		1	B1	
	(b)	$c^{2} + 2cd + d^{2} - d^{2}$			M1	Alt (c + d +d)(c +d - d)
			c(c + 2d)	2	A1	
	(C)		(2w +3)(w - 1)	2	B2	B1 for 1 correct factor or (2w-3)(w+1)
						Integers only
						Total 5 marks

18.	Alt. 144 π M 112π/144π(=7/9 M1 7/9 x 360	1 9) or 32π/144π(=2/9) or 2/9 x 360 =80 M1	x/360 (x=)11 oe	х п х 12 ² =112п 12 п х360/12 ² п	280	4	M2 1.256 M1 A1	M1 for x/360 x π x 12 ² (=0.4πx or x)	
								Total	4 marks

19.	(a)	$x^{2}/x(x-2)$			M1	M1 for x(x-2)
			x/(x-2)	2	A1	brackets not necessary
	(b)	2(x+1) - (2x - 1)			M2	M1 for (2x - 1)(x + 1) seen
		(2x - 1)(x + 1)				
		2x+2 - 2x + 1			M1	
		(2x - 1)(x + 1)				
			3			3
			(2x - 1)(x +1)oe	4	A1	$2x^2 + x - 1$
						Total 6 marks

	Q	Working	Answer	Mark	Notes
20.	(a)	(2/3) ³			M1
			8/27 oe	2	A1 0.296
	(b)	$(2/3)^2 \times 1/3 \times 3$			M2 M1 for (2/3) ² x 1/3 (=4/27)
			4/9 oe	3	A1 0.444
					Total 5 marks

21.	(a)	t = k √d			M1
		12 = k √4			M1
		k = 6			
			t =6√d	3	A1 Must make t the subject
	(b)	"6" x √9			M1ft
			18	2	A1 ft
					Total 5 marks

22.	210 - 70 (=140) ("AB" ² =) 3 ² + 5 ² - 2 x 3 x 5 cos "x" ("AB" ² =) 56.98	7 55	2	M1 A1	x=80,140,210 awrt 57 7 5485 - awrt 7 54 ar 7 55
		/.55	3	AI	7.5485 awrt 7.54 or 7.55
					Total 3 marks

23.	d/s = t 25 x 400.5 / 4.95 (=2022.727)secs "2022.727"/60 (=33.712) mins	33mins 43 secs	4	M2 M1 for 400.5 or 4.95 seen M1 dep on at least 1 previous M1 A1 cao
				Total 4 marks

	Q	Working	Answer	Mark	Notes
24.	(a)		x ² - 3	1	B1 accept "y=" $x^2 - 3$
(i)					
			x + 3	1	B1 accept "y=" x + 3
(ii)					
	(b)	$x^{2} - 3^{2} = x + 3^{2}$			M1ft quadratic = linear (ax+b) a,b≠ 0
		$x^2 - x - 6 = 0$			
		(x - 3)(x + 2) (=0)			M1 or formula reaching (x=) $(1\pm\sqrt{25})/2$
			x = 3 x = 2	3	A1 cao algebraic method req ^d
					Total 5 marks

25.	(a)	$a^{3.5} = k a^{0.5}$ or $a^3 \int a(=k \int a)$			M1	M1 for 3.5 and 0.5 seen or $(\sqrt{a})^6$ or a^3
			n=3	2	A1	
	(b)	$2^{-1} \times 2^{-0.5}$			M1	$1/2^{1.5}$ or $\sqrt{2}/4$ or $2^{0.5}/2^2$ or $2^{0.5} \times 2^{-2}$
			2 ^{-1.5}	2	A1	
						Total 4 marks
		•				
						TOTAL FOR PAPER: 100 MARKS

IGCSE Mathematics (4)	4400)	Paper	3H November 200	19
------------------------------	-------	-------	-----------------	----

4400/4H

London Examinations IGCSE

Examiner's use only					
Team Leader's use only					

Mathematics Paper 4H

Higher Tier

Tuesday 10 November 2009 - Morning

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Without sufficient working, correct answers may be awarded no marks.

You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 22 questions in this question paper. The total mark for this paper is 100. There are 24 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited.

edexcel

Turn over

	Answer ALL TWENTY TWO questions.	Leave blank
	Write your answers in the spaces provided.	
	You must write down all stages in your working.	
1.	Use your calculator to work out the value of $\frac{11.7 + 18.4^2}{0.3}$ Write down all the figures on your calculator display.	
	(Total 2 mayles)	Q1
	(lotal 2 marks)	
2.	(a) Factorise $n^2 - 4n$	
	(2)	
	(b) Solve $8 - 5x = 2$	
	$x = \dots $	Q2
	(Total 5 marks)	
\square		3

4.	A b The Bin The (a)	ag contains some beads. e colour of each bead is red or green or blue. ita is going to take a bead at random from the bag. e probability that she will take a red bead is 0.4 e probability that she will take a green bead is 0.5 Work out the probability that she will take a blue bead.		Leave blank
	(b)	There are 80 beads in the bag. Work out the number of red beads in the bag.	(2)	
			(2)	Q4
			(Total 4 marks)	
5.	(a)	Cheng invested 3500 dollars. At the end of one year, interest of 161 dollars was added to	o his account.	
		Express 161 as a percentage of 3500		
			[%] (2)	
	(b)	Lian invested an amount of money at an interest rate of 5.2 After one year, she received interest of 338 dollars.	2% per year.	
		Work out the amount of money Lian invested.		
			dollars (3)	Q5
			(Total 5 marks)	
				5
			 	urn over

H 3 4 8 5 A 0 6 2 4

7.	Carlos mixes cement, lime and sand in the ratios 1 : 2 : 9 by weight.	Leave blank
	Work out the weight of cement, the weight of lime and the weight of sand in 60 kg of the mixture.	2
	cement	T
	lima ka	5
		5
	sand Kg	g Q7
	(Total 3 marks)	
8.	Use ruler and compasses to construct the perpendicular bisector of the line <i>AB</i> . You must show all construction lines.	
	B	
	4	
		08
	(Total) marke	
	(10tal 2 marks)	
		7 Turr
	H 3 4 8 8 5 A 0 7 2 4	iurn ove

Leave

Leave blank

10.	(a)	The table shows	information	about the	rainfall in	Singapore	in December	one vear
10.	(4)		miormation	uoout me	runnun m	Singapore		one year

Rainfall (d mm)	Number of days
$0 \leqslant d < 10$	23
$10 \leqslant d < 20$	3
$20 \leqslant d < 30$	2
$30 \leqslant d < 40$	3

Work out an estimate for the total rainfall in December.

..... mm (3)

11. (a) Find the Highest Common Factor of 64 and 80	Leave blank
(2) (b) Find the Lowest Common Multiple of 64 and 80	
(2) (Total 4 marks)	Q11
12. (a) Expand and simplify $(p + 7)(p - 4)$	
(b) Simplify $4x^3y^5 \times 3x^2y$	
(c) Simplify $(27q^6)^{\frac{2}{3}}$ (2)	
(Total 6 marks)	Q12

Turn over

H 3 4 8 8 5 A 0 1 5 2 4

17.

$$T = \frac{n(1+e)}{(1-e)}$$

(a) Work out the value of *T* when n = 8.6 and e = 0.2

	Leave
19. A particle moves in a straight line through a fixed point <i>O</i> .	blank
The displacement, s metres, of the particle from O at time t seconds is given by	
$s = t^3 - 5t^2 + 8$	
(a) Find an expression for the velocity, $v m/s$, of the particle after t seconds.	
$v = \dots$	
)
(b) Find the time at which the acceleration of the particle is 20 m/s^2 .	
second	s Olo
(2) Q19
(Total 4 marks)
	19 Turn ave
H 3 4 8 8 5 A 0 1 9 2 4	

22. Solve the simultaneous equations

$$y - 3x = 4$$
$$x^2 + y^2 = 34$$

November 2009 IGCSE Mathematics (4400) Mark Scheme - Paper 4H

Except for questions * where the mark scheme states otherwise the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

[* Questions 2(b), 21 and 22]

Trial and improvement methods for solving equations score no marks, even if they lead to a correct solution.

Q	Working	Answer	Mark		Notes
1.	350.26		2	M1	for 350.26
	0.3				
		1167.5333		A1	Accept 1dp or better
					Also accept 1167.53 or $\frac{17513}{15}$
					Total 2 marks

2.	(a)		n(n – 4)	2	B2	B1 for factors which, when expanded
						and simplified, give two terms, one of
						which is correct except $(n + 2)(n - 2)$
						and similar SC B1 for <i>n</i> (<i>n</i> – 4 <i>n</i>)
	(b)	5x = 8 - 2 or -5x = 2 - 8		2		M1 for 5x + 2 = 8
		or $5x = 6$ or $-5x = -6$		5	///2	
			1 ¹ oe		A1	dep on M2
			15 00			Do not accept $\frac{-6}{-6}$
						-5
						Total 5 marks

	Q	Working	Answer	Mark		Notes
3.	(a)(i)		62	2	B1	CaO
	(ii)		alternate angles		B1	Accept 'alternate' but not 'Z angles'
	(b)	$\frac{180-62''}{2}$ or $\frac{180-62}{2}$ or 59		2	M1	
			121		A1	cao
						Total 4 marks

4.	(a)	1 - (0.4 + 0.5)		2	M1	
			0.1		A1	Also accept $\frac{0.1}{1}$
	(b)	$0.4 \times 80 \text{ or } \frac{n}{80} = 0.4$		2	M1	
			32		A1	сао
						Total 4 marks

5.	(a)	$\frac{161}{3500}$ × 100		2	M1	for $\frac{161}{3500}$ oe inc 0.046
			4.6		A1	cao
	(b)	$1\% = \$ \frac{338}{5.2}$ or 65 seen or 5.2% (of amount) = 338		3	M1	M2 for $\frac{338}{5.2} \times 100$ or $\frac{338}{0.052}$
		"65" × 100			M1	
			6500		A1	
						Total 5 marks

Q	Working	Answer M			Notes	
6. (a)	Ref	flection in the line y = 4	2	B2	B1 for reflection, reflects etc B1 for y = 4 or eg 'dotted line' but, if given, equation must be correct	These marks are independent but award no marks if answer is not a single transformation.
(b)	Enlargemer	Enlargement with scale factor 1½, centre (1,6)			B1 for enlargement, enlarge etc B1 for 1½ oe B1 for (1,6)	(Second transformation may be implied)
						Total 5 marks

7.	1 + 9 + 2 or 12 or 5 seen		3	M1	May be implied by 1 correct answer
		5 10 45		A2	A1 for one correct
					Total 3 marks

8.	Arcs of equal radii > $\frac{1}{2}AB$, centres A, B, which intersect twice		M1
	Perpendicular bisector within guidelines		A1
			Total 2 marks

Q	Working	Answer	Mark		Notes
9. (a)		Correct line	2	B2	Must be a single straight line passing through at least 3 of $(0, -2)$, $(3, 0)$, (6, 2), $(9, 4)B1 for a single straight line with apositive gradient passing through either(0, -2)$ or $(3, 0)or for 3 of 4 points (0, -2), (3, 0),(6, 2)$, $(9, 4)$ correct with at most 1 point incorrect Allow $\pm 2mm$
(b)	Lines x = 3 and x = 6 drawn		3	B1	
	Lines y = 2 and y = 4 drawn			B1	
		R shown		B1	Condone omission of label Accept shading in or shading out, if consistent Award 3 marks for correct labelled rectangle, even if not shaded Award 2 marks for a correct unshaded rectangle without a correct label SC B1 for region bounded by $2 \le x \le 4$ and $3 \le y \le 6$
					Total 5 marks

10.	(a)	6.2	C	5 × 23 + 15 × 3 + 25 × 2 + 35 ×		3	M1	for finding at least 3 products $x \times f$
				3				consistently within intervals (inc end
				= 115 + 45 + 50 + 105				points)
							M1	(dep) for use of at least 3 correct
								halfway values
					315		A1	cao isw after 315
	(b)	6.1	A		19 4 7	3	B3	B1 for each value cao
	_							Total 6 marks

Q	Working	Answer	Mark		Notes
11. (a)	$64 = 2^{6}$ and $80 = 2^{4} \times 5$ or 1,2,4,8,16,32,64 and 1,2,4,5,8,10,16,20,40,80 or 2^{4}		2	M1	Need not be product of powers; accept products or lists ie 2,2,2,2,2,2 and 2,2,2,2,5 Prime factors may be shown as factor
		16		A1 .	cao
(b)	$2^{6} \times 5$ oe eg $2^{4} \times 4 \times 5,16 \times 4 \times 5$ or 64,128,192,256,320 and 80,160,240,320		2	M1	
		320		A1 (cao
					Total 4 marks

12. (a)	$p^2 - 4p + 7p - 28$		2	M1	for 4 correct terms ignoring signs or for
					3 terms with correct signs
		p ² + 3p - 28		A1	cao
(b)		12x ⁵ y ⁶	2	B2	B1 for any two parts correct
(C)		9q ⁴	2	B2	B1 for either 9 or q^4
					Total 6 marks

13. (a)	$18 \times \frac{15}{12}$		2	M1	for $\frac{15}{12}$ (1.25) oe or $\frac{18}{12}$ (1.5) oe seen
		22.5		A1	cao
(b)	eg $20 \div \frac{15}{12}$, $20 \times \frac{12}{15}$, $12 \times \frac{20}{15}$		2	M1	for eg 20 ÷ 1.25, 20 × 0.8, 12 × 1.3
		16		A1	cao
					Total 4 marks

Q	Working	Working Answer		Notes
14. (a)		-8 (8) 12 10 8 12	2	B2 for all correct (B1 for 3 correct)
(b)		Points	2	B1 Allow <u>+</u> ½ sq ft from table if at least B1 scored in (a)
		Curve		B1 ft if B1 for points Award for single curve (not line segments) which does not miss more than one plotted point by more than ½ square
				Total 4 marks

15.	(a)(i)	2 × 58		116	2	B1	CaO
	(ii)		= 2 × an	eg angle at the centre gle at the circumference		B1	Three key points must be mentioned 1. angle at centre/middle/O/origin 2. twice/double/ 2× or half/ $^{1}/_{2}$ as appropriate 3. angle at circumference/ edge/ perimeter/arc (<i>NOT</i> e.g. angle <i>B</i> , angle <i>ABC</i> , angle at top, angle at outside)
	(b)(i)	180 - 58		122	2	B1	cao
	(ii)		eg sum of opposite angles of a cy	clic quadrilateral = 180°		B1	Accept reason which includes 'opposite' and 'cyclic' and nothing incorrect Also award if (b)(i) is correct and reason is given as 'angle at the centre = 2 × angle at the circumference' oe Ignore additional reason(s)
							Total 4 marks

Q	Working	Answer	Mark	Notes		
16. (a)	First chocolate 7 centre 3 hard centre	Second choco late 69 soft centre 39 hard centre 79 soft centre 79 centre 20 hard centre 20 hard centre	2	 B2 for completely correct diagram, inc labels (accept clear abbreviations eg S and H) (B1 for branches with at least 3 correct probabilities the correct place) 	s in	
(b)	$\frac{7}{10} \times \frac{3}{9} + \frac{3}{10} \times \frac{7}{9} + \frac{3}{10} \times \frac{2}{9}$ (= $\frac{21}{90} + \frac{21}{90} + \frac{6}{90}$) or $\frac{7}{10} \times \frac{3}{9} + \frac{3}{10}$ (= $\frac{21}{90} + \frac{3}{10}$)		3	M1for one correct productM2 for $1-\frac{7}{10} \times \frac{6}{9}$ SC M1 for $\frac{7}{10} \times \frac{3}{10}$ for metho marks ft from thei tree diagram, providedM1for completely correct expressionSCSC M1 for $1-\frac{7}{10} \times \frac{6}{9}$ for metho marks ft from thei tree SC M1 (dep) for sum of above products or forM1for $\frac{7}{10} \times \frac{7}{10}$ for $\frac{7}{10} \times \frac{3}{10} + \frac{3}{10}$	od ir ties	
		48 90		A1 for $\frac{48}{90}$ oe inc $\frac{8}{15}$ or for 0.53		
				Total 5 ma	arks	

Q	Working	Answer	Mark	Notes
17. (a)	$\frac{8.6 \times (1+0.2)}{10.32}$ or $\frac{10.32}{10.32}$		2	M1 for correct substitution
	(1-0.2) 0.8			
		12.9 oe		A1
(b)	T(1-e) = n(1+e)		5	M1 removes fractions
	T-eT=n+en			M1 expands brackets
	en + eT = T - n			M1 collects terms
	e(n+T)=T-n			M1 factorises
		T-n		A1 for $\frac{T-n}{2}$ or
		$\overline{T+n}$		$\frac{101}{T+n}$ oc
				Total 7 marks

18.	8.3 ² - 7.2 ² = 68.89 - 51.84 = 17.05		5	M1	for 8.3 ² – 7.2 ²
	$\sqrt{8.3^2 - 7.2^2} = 4.129$			M1	for $\sqrt{8.3^2 - 7.2^2}$
	tan and "4.129" 3.9			M2	M1 for tan and $\frac{3.9}{"4.129"}$ Accept <i>CD</i> rounded or truncated to at
		46.6		A1	Accept answer rounding to 46.6 $(4.1 \rightarrow 46.43 4.12 \rightarrow 46.57$ $4.13 \rightarrow 46.64)$
					Total 5 marks

Alternative methods for Q18 appear on the next two pages.

Question 18 Alternative methods

Method 1

Working	Answer	Mark	Notes
$8.3^2 - 7.2^2$		5	M1 for $8.3^2 - 7.2^2$
= 68.89 - 51.84 = 17.05			
$\sqrt{8.3^2 - 7.2^2} = 4.129$			M1 for $\sqrt{8.3^2 - 7.2^2}$
$\sqrt{4.129^2 + 3.9^2} = 5.679$			
$\frac{3.9}{1}$			M2 M1 for cos and "5.679"
"5.679"			3.9
			Accept BC rounded or truncated to at
			least 1 dp (5.67978)
	46.6		A1 Accept answer rounding to 46.6
			Total 5 marks

Method 2

Working	Answer	Mark	Notes
$8.3^2 - 7.2^2$ = 68.89 - 51.84 = 17.05		5	M1 for 8.3 ² – 7.2 ²
$\sqrt{8.3^2 - 7.2^2} = 4.129$ $\sqrt{4.129^2 + 3.9^2} = 5.679$			M1 for $\sqrt{8.3^2 - 7.2^2}$
sin and "4.129" "5.679"			M2 M1 for sin and $\frac{"5.679"}{"4.129"}$ Accept <i>CD</i> rounded or truncated to at least 1 dp (4.12916) and <i>BC</i> rounded or truncated to at least 1 dp (5.67978)
	46.6		A1 Accept answer rounding to 46.6
			Total 5 marks

Method 3

Working	Answer	Mark	Notes
Correct method for finding $\angle A$		5	M1 eg for $\cos \angle A = \frac{7.2}{8.3}$ ($\angle A = 29.83^{\circ}$)
$\sqrt{11.1^2 + 8.3^2 - 2 \times 11.1 \times 8.3 \cos^2 29.8^2}$			M1 for correct Cosine Rule expression for calculating <i>BC</i>
cos and 3.9 "5.679"			M2 M1 for cos and "5.679" 3.9
			Accept <i>BC</i> rounded or truncated to at least 1 dp (5.67978)
	46.6		A1 Accept answer rounding to 46.6
			Total 5 marks

Method 4

Working	Answer	Mark	Notes
Correct method for finding $\angle A$		5	M1 eg for $\cos \angle A = \frac{7.2}{8.3}$ ($\angle A = 29.83^{\circ}$)
$\sqrt{11.1^2 + 8.3^2 - 2 \times 11.1 \times 8.3 \cos"29.8"}$			M1 for correct Cosine Rule expression for calculating <i>BC</i>
$\sin B = \frac{8.3 \sin^2 29.8''}{5.68''}$			M2 for correct expression for sinB
			M1 for correct statement of Sine Rule eg $\frac{\sin B}{8.3} = \frac{\sin"29.8"}{"5.68"}$
	46.6		A1 Accept answer rounding to 46.6
			Total 5 marks

Q	Working	Answer	Mark	Notes
19. (a)		3 <i>t</i> ² – 10 <i>t</i>	2	B2 B1 for 3t ² or - 10t Ignore further differentiation seen in body or on answer line
(b)	6 <i>t</i> - 10 = 20		2	M1 for linear expression including either 6 <i>t</i> or -10
		5		A1 ft from "6t – 10" = 20 if M1 scored
				Total 4 marks

20. (a)	14	1	B1	Cao	
(b)	9	1	B1	cao	
(c)(i)	6 3 2	3	B2	B1 for 2 correct	
(ii)	11		B1	cao	
				Total 5 m	narks

21.	12 × 12	12 × 12		4	M1	or for $r^2 = 12^2 + (18 - r)^2$
	= 18(d - 18)	= 18 <i>x</i>				
	144 = 18d - 324	x = 8			M1	or for <i>r</i> ² = 144 + 324 – 18 <i>r</i> – 18 <i>r</i> + <i>r</i> ²
	18 <i>d</i> = 468	(<i>d</i> =)8+18			M1	or for 36 <i>r</i> = 468
			26		A1	dep on all method marks
						Total 4 marks

Alternative methods for Q21 appear on the next page.

Question 21 Alternative methods

Method 1

Working	Answer	Mark	Notes
Complete, correct method for finding $\angle AOM$ or $\angle BOM$ or $\angle OAB$ or $\angle OBA$		4	M1 eg tan $\angle ALM = \frac{12}{18}$ $\angle ALM = 33.69^{\circ}$ $\angle AOM = 2 \times 33.69^{\circ}$ $= 67.38^{\circ}$ $AL = \sqrt{12^{2} + 18^{2}} = \sqrt{468} = 21.63 \text{ cm}$ $\cos \angle ALB = \frac{468 + 468 - 576}{2 \times 468} = 0.3846$ $\angle ALB = 67.38^{\circ}$ $\angle ALM = 33.69^{\circ}$ $\angle ALM = 33.69^{\circ}$ $\angle AOM = 2 \times 33.69^{\circ} = 67.38^{\circ}$ $\angle AOM = 2 \times 33.69^{\circ} = 67.38^{\circ}$ $\Box AOM = 2 \times 33.69^{\circ} = 67.38^{\circ}$
Correct numerical expression for length of <i>OA</i> or <i>OM</i>			M1 eg $\frac{12}{\sin 67.38^{\circ}}$ or $\frac{24 \sin 22.62^{\circ}}{\sin 134.76^{\circ}}$ (= 13) or $\frac{12}{\tan 67.38^{\circ}}$ or $12 \tan 22.62^{\circ}$ (= 5)
Length of OA or OM used to find diameter			M1 eg 2 × "13" or 2 × (18 – "5") dep on both previous M1s
	26		A1 dep on all method marks Accept answer rounding to 26.0
			Total 4 marks

Method 2

Working	Answer	Mark		Notes	
AM = 12, OM = 5, OA = 13 and 13 + 5 = 18 or 18 - 5 = 13		4	M3	for use of Pythagorean triple 5-12-13 or use of OM = 5 Pythagoras to obtain $\sqrt{5^2 + 12^2} = 13$ for OA	and justification
	26		A1	dep on M3	
					Total 4 marks

Q	Working	Answer	Mark	Notes
22.	y = 3x + 4		7	B1 for correct rearrangement
	$x^2 + (3x+4)^2 = 34$			M1 for correct substitution
	$x^{2} + 9x^{2} + 12x + 12x + 16 = 34$ or $x^{2} + 9x^{2} + 24x + 16 = 34$			B1 (indep) for correct expansion of $(3x + 4)^2$ even if unsimplified
	$10x^2 + 24x - 18 (= 0)$			B1 for correct simplification Condone omission of '= 0'
	(5x-3)(2x+6)(=0) or $(5x-3)(x+3)(=0)$ or $(10x-6)(x+3)(=0)$			B1 for correct factorisation Condone omission of '= 0'
	or $\frac{-24 \pm \sqrt{1296}}{20}$ or $\frac{-12 \pm \sqrt{324}}{10}$			or for correct substitution into the quadratic formula and correct evaluation of $b^2 - 4ac^2$
	or $\frac{-12}{10} \pm \frac{\sqrt{324}}{10}$ or $\frac{-6}{5} \pm \frac{\sqrt{81}}{5}$			or for using square completion correctly as far as indicated
	$x = \frac{3}{5}$ or $x = -3$			A1 for both values of <i>x</i>
		$x = \frac{3}{5}, y = 5\frac{4}{5}$ x = -3, y = -5		A1 for complete, correct solutions Need not be explicitly paired
				Total 7 mark
			T	TOTAL FOR PAPER: 100 MARKS

Note

The mark scheme for an alternative method for Q22 is on the next page.

Question 22 Alternative method

Working	Answer	Mark	Notes
$x = \frac{y-4}{3}$		7	B1 for correct rearrangement
$\boxed{\left(\frac{y-4}{3}\right)^2+y^2=34}$			M1 for correct substitution
$\frac{y^2 - 4y - 4y + 16}{9} + y^2 = 34 \text{ or}$			B1 (indep) for correct expansion of $(y - 4)^2$ even if unsimplified
$y^2 - 4y - 4y + 16 + 9y^2 = 306 \text{ o}$			
$r \frac{y^2 - 8y + 16}{9} + y^2 = 34$			
or $y^2 - 8y + 16 + 9y^2 = 306$			
$10y^2 - 8y - 290(= 0)$			B1 for correct simplification Condone omission of '= 0'
(5y-29)(y+5)(=0)			B1 for correct factorisation
(5y - 29)(2y + 10)(= 0)			Condone omission of '= 0'
(10y - 58)(y + 5)(= 0)			or for correct substitution into the
$8 \pm \sqrt{11664}$ $4 \pm \sqrt{2916}$			quadratic formula and correct
or $\frac{1}{20}$ or $\frac{1}{10}$			evaluation of $b^2 - 4ac'$
or $\frac{4}{10} \pm \frac{\sqrt{2916}}{10}$ or $\frac{2}{5} \pm \frac{\sqrt{729}}{5}$			or for using square completion correctly as far as indicated
$y = 5\frac{4}{5}$ or $y = -5$			A1 for both values of y
	$x=\frac{3}{5}, y=5\frac{4}{5}$		A1 for complete, correct solutions
	x = -3, $y = -5$		
			Total 7 marks

4400/3H

London Examinations IGCSE

Mathematics Paper 3H

Higher Tier

Monday 7 June 2010 – Afternoon

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Without sufficient working, correct answers may be awarded no marks.

You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 21 questions in this question paper. The total mark for this paper is 100. There are 20 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited.

Turn over

An	swer ALL TWENTY ONE questions.	Leave blank
Writ	te your answers in the spaces provided.	
You mu	ıst write down all stages in your working.	
1. Here are the ingredients	needed to make Apple Fool for 6 people.	
[Apple Fool	
	Ingredients for 6 people	
	900 g cooking apples	
	100 g sugar	
	300 m <i>l</i> double cream	
(a) Work out the amount	nt of sugar needed to make Apple Fool for 15 people.	
	a	
	(2)	
(b) Work out the amoun	nt of cooking apples needed to make Apple Fool for 5 people.	
	g	01
	(2)	Q1
	(Total 4 marks)	
		3
		ırn over

6. The table shows information about the volume of water, in m³, used by each of 80 families in one year.

Volume of water (V m ³)	Frequency
$0 < V \leqslant 100$	2
$100 < V \leq 200$	4
$200 < V \leqslant 300$	6
$300 < V \leqslant 400$	18
$400 < V \leqslant 500$	44
$500 < V \leqslant 600$	6

(a) Write down the modal class.

.....

(1)

(b) Work out an estimate for the mean volume of water used by the 80 families.

..... m³ (4)

7.	6.8 cm Diagram NOT accurately drawn Work out the value of <i>x</i> . Give your answer correct to 3 significant figures.	Leave blank
	x = (Total 3 marks)	Q7
8.	Jade has tax deducted from her income at the rate of 24%. Last month, after tax had been deducted, \$1786 of her income remained. Calculate her income last month before the tax was deducted.	
	\$	Q8
	(Total 3 marks)	

..... cm²

(2)

Diagram **NOT** accurately drawn

The diagram shows a fish bowl. The water surface is a circle with a diameter of 16 cm.

(a) Work out the area of a circle with a diameter of 16 cm. Give your answer correct to 3 significant figures.

(b) The volume of water, $V \text{ cm}^3$, in the fish bowl may be found using the formula

$$V = \frac{1}{6}\pi h \left(3x^2 + 3y^2 + h^2 \right)$$

Find the value of V when h = 16.4

$$x = 6.5$$

and $y = 8$

Give your answer correct to 3 significant figures.

11.
12. (a) Complete the table of values for $y = x^3 - 12x + 2$ -3 -2 -1 0 1 2 3 4 \boldsymbol{x} -718 11 y (2) (b) On the grid, draw the graph of $y = x^3 - 12x + 2$ for values of x from -3 to 4 y 20 10 2 $_1 \pm 0$ = 5 x 2 3 1 4 2 10--20 (2) 12

Leave blank

N 3 6 9 0 4 A 0 1 3 2 0

Leave blank

Diagram **NOT** accurately drawn

A, *B* and *C* are points on horizontal ground. *C* is due West of *B*. *A* is due South of *B* and AB = 40 m. There is a vertical flagpole at *B*. From *A*, the angle of elevation of the top of the flagpole is 13°. From *C*, the angle of elevation of the top of the flagpole is 19°.

Calculate the distance *AC*. Give your answer correct to 3 significant figures.

m	Q20
---	-----

(Total 6 marks)

....

20.

Leave blank

21. Solve the simultaneous equations

 $y = 2x^2$ y = 3x + 14

Q21

Summer 2010 IGCSE Mathematics (4400) Mark Scheme - Paper 3H

Apart from Questions 4(c), 16 and 21 (where the mark scheme states otherwise), the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark		Not	tes
1 a	$\frac{15}{6} \text{ oe or } \frac{100}{6} \text{ oe inc value rounded}$ or truncated to at least 1 dp eg 16.6, 16.7		2	M1		
		250		A1	сао	
b	$\frac{900}{6} \text{ or } \frac{5}{6} \text{ oe inc value rounded or}$ truncated to at least 2 dp eg 0.83		2	M1		
		750		A1	сао	
						Total 4 marks

2 ai	62	2	B1	cao
ii	alternate		B1	Accept 'opposite and corresponding' (need both)
				or 'opposite, angle sum of triangle = 180 $^\circ$ and
				sum of angles on a line = 180°' (need all three)
bi	71	2	B1	Cao
ii	corresponding		B1	Accept 'opposite and alternate' (need both)
				or 'opposite, angle sum of triangle = 180 $^\circ$ and
				sum of angles on a line = 180°' (need all three)
				Total 4 marks

3 a	6	1	B1	cao	
b	7	1	B1	cao	
					Total 2 marks

	Q	Working	Answer	Mark		Not	es
4	a		5 <i>n</i> + 30	1	B1		
	b		y ⁶	1	B1	cao	
	с	4x - 8 = 3		3	M1	for correct expansion of $4(x-2)$ or for either 4x = 3 + 2 or $4x = 5following 4x - 2 = 3$	M2 for $x - 2 = \frac{3}{4}$
		4x = 8 + 3 or 4x = 11			M1	for 4x = 8 + 3 or 4x = 11	
			2 3 0e		A1	dep on 2 method ma	rks
							Total 5 marks

5 a	$\frac{3}{10} \times \frac{5}{6}$		2	M1	
		$\frac{15}{60}$ or $\frac{1}{4}$		A1	Accept $\frac{3}{12}$, $\frac{5}{20}$
b		24	2	B2	B1 for multiple of 24
					Total 4 marks

	Q	Working	Answer	Mark		Notes
6	a		400 < V <u><</u> 500	1	B1	Accept 400-500
	b	50 × 2 + 150 × 4 + 250 × 6 + 350 × 18		4	M1	for finding at least 4 products
		+ 450 × 44 + 550 × 6				$m \times f$ consistently within
		= 100+600+1500+6300+19 800+3300				intervals (inc end points)
		= 31 600			M1	(dep) for use of at least 4 correct halfway values
		31 600 ÷ 80			M1	(dep on 1st M1) for adding and \div by 80
			395		A1	
	с		2 6 12 30 74 80	1	B1	CaO
	d		Points correct	2	B1	<u>+</u> ½ sq ft from sensible table
			Curve or line segments		B1	ft from points if 4 or 5 correct
						or if points are plotted
						consistently within each interval
						at the correct heights
	е	Use of 40 (or 40.5) on graph or 40		2	M1	for use of 40 (or 40.5) on cf graph
		(or 40.5) stated				or for 40 (or 40.5) stated
			approx 420		A1	If M1 scored, ft from cf graph
						If no indication of method, ft
						only from correct curve & if
						answer is correct
						(<u>+</u> $\frac{1}{2}$ sq tolerance) award M1 A1
						Total 10 marks

Q	Working	Answer	Mark			Notes
7	cos and 41		3	M1	or M1 for	or M1 for correct
	6.8 cos 41°			M1	6.8sin41°	statement of
					(4.461) and	Sine Rule eg
					6.8 ² -	6.8 x
					"4.461" ²	$\frac{1}{\sin 90^{\circ}} = \frac{1}{\sin 49^{\circ}}$
					(26.337)	M1 for correct
					M1 for	expression for x
					√" 26.337 "	eg
						6.8 sin 49°
						sin 90°
		5.13		A1	for ans rounding	to 5.13 (5.132025)
						Total 3 marks

8	$\frac{1786}{0.76}$ or $1786 \times \frac{100}{76}$ oe		3	M2	for $\frac{1786}{0.76}$ or $1786 \times \frac{100}{76}$ oe	
					M1 for $\frac{1786}{76}$, 76% = 1786,	
					$\frac{1786}{x}$ = 0.76, 1786 = 0.76x	
					or 23.5 seen	
		2350		A1	сао	
						Total 3 marks

Q	Working	Answer	Mark		Notes	
9 a		reflection in the line $y = -x$	2	B2	B1 for reflection	These marks are
					B1 for $y = -x$ oe	independent
					[accept eg	but award no marks
					"in dotted line"	if the answer is not a
					or "in line through	single transformation
					(−5,5) and (5, −5)"]	
b		R correct	2	B2	B1 for 2 vertices correct	
		Vertices are (2,-1)(3,-1)(3,-3)			or for a translation of R	
					or for a 90° clockwise ro	tation of Q about (-1,1)
с		reflection in the line $y = 1$	2	B2	B1 for reflection	As in (a)
					B1 for $y = 1$ oe	
					[accept eg "in a	
					horizontal line	
					through (0,1)]	
					ft from (b),	
					if B1 scored in (b)	
						Total 6 marks

10 a		-4 <u><</u> x < 3	2	B2	Also accept 'x < 3 and $x \ge -4$ '
					B1 for −4 <u><</u> x <u><</u> 3, −4 < x < 3,
					$-4 < x \leq 3$, a double-ended inequality
					which is correct at one end
					(ignore the other end)
					Also award B1 for $x \ge -4$, $x < 3$,
					'x < 3 <u>or</u> x ≥ −4'
bi	2x > -8		4	M1	for 2x > – 8 or x + 4.5 > 0.5
		x > -4		A1	for $x > -4$ as final answer
ii		-3 -2 -1	2	B2	B1 for 3 correct and 1 wrong
					or for 2 correct and none wrong
					Total 6 marks

	Q	Working	Answer	Mark		Notes
11	a	$\pi \times 8^2$		2	M1	
			201		A1	for ans rounding to 201
						$(\pi \rightarrow 201.061 3.14 \rightarrow 200.96)$
	b	eg 8.5870 × 587.71		2	M1	for correct evaluation of
						at least 2 of the terms inside
						the brackets (126.75, 192, 268.96
						accept if rounded or truncated to at least 3sf)
						or for correct evaluation of brackets
						(587.71 - accept 587, 588 or 587.7)
			5050		A1	Accept any answer
						in the range 5040-5050 inclusive.
						$(\pi \rightarrow 5046.677 \ 3.14 \rightarrow 5044.119)$
						Total 4 marks

12	a		18 13 2 -9 -14	2	B2	for all correct B1 for 3 or 4 correct
	b		Points	2	B1	<u>+</u> ½ sq ft from (a) if at least B1 in (a)
			Curve		B1	ft if B1 awarded for points or if
						there is not more than
						one point incorrectly plotted and
						at least B1 scored in (a)
						Award for single curve (not line segments)
						which does not miss.
						more than one plotted point
						by more than ½ square
	ci		3 <i>x</i> ² - 12	4	B2	B2 for 3x ² – 12
						B1 for two of three terms
						differentiated correctly
	ii	$3 \times 5^2 - 12$			M1	for substn $x = 5$ in their (c)(i) if at least B1
						scored in (c)(i)
			63		A1	сао
						Total 8 marks

IGCSE Mathematics (4400) Paper 3H Summer 2010

Q	Working	Answer	Mark		Notes
13	There are 4 independ	lent requirements to consider v	vhen mar	king this	question but the order in which
	they are satisfied wi	ll vary. Focus on these 4 key po	oints, igno	oring irre	elevant or incorrect statements.
	$\angle PQS = 36^{\circ} \text{ or } \angle SPR = 54^{\circ}$		4	B1	May be stated or marked on diagram
	angles in the same segment			B1	Award if 'same segment', 'same arc', or 'same chord'
	$\angle PQR = 90^{\circ} \text{ or } \angle PSR = 90^{\circ}$			B1	Angle may be stated or marked on diagram.
	and angle in a semicircle is a right angle				Condone omission of 'is a right angle' oe.
		54		B1	cao
					Total 4 marks

14 a	ai		15	2	B1	Cao
	ii		8.25		B1	сао
b	0	1/2×"15"×"8.25"		2	M1	
			61.875		A1	Also accept 61.88
с		"8.25"		3	M1	numerator "8.25"
		25			M1	denominator 25
			0.33		A1	сао
						Total 7 marks

Q	Working	Answer	Mark		Notes
15 a	$E = \frac{k}{r^2}$		3	M1	for $E = \frac{k}{r^2}$
					but not for $E = \frac{1}{r^2}$
	$4 = \frac{k}{50^2}$			M1	
		$\frac{10000}{r^2}$		A1	Award 3 marks if answer is $E = \frac{k}{r^2}$
					but <i>k</i> is evaluated as 10 000 in <i>any</i> part
b		25	1	B1	ft from $\frac{"10000"}{400}$ except for $k = 1$,
					if at least M1 scored in (a)
С	$r^2 = \frac{10000}{1600}$ oe		2	M1	for substitution and rearrangement into form
					$r^2 = \frac{k}{1600}$ or $r = \frac{\sqrt{k}}{40}$ with their value of k
					except for $k = 1$
		2.5 oe		A1	cao
					Total 6 marks

16	eg $9 - 3\sqrt{5} - 3\sqrt{5} + \sqrt{5}^2$	2	2	B2	B1 for $9 + \sqrt{5}^2$ or $9 + \sqrt{5}\sqrt{5}$
	$9-2\times 3\sqrt{5}+\sqrt{5}^2$				or $9 + \sqrt{25}$ or $3^2 + \sqrt{5}^2$
					or $3^2 + \sqrt{5}\sqrt{5}$ or $3^2 + \sqrt{25}$
					B1 for $-3\sqrt{5} - 3\sqrt{5}$
					or for $-2 \times 3\sqrt{5}$
					Total 2 marks

Q	Working	Answer	Mark	Notes
17	$\frac{18}{12}$ or 1.5 oe or 18 : 12 oe		3	M1 for $\frac{18}{12}$ or 1.5 oe or 18 : 12 oe
				Also award for $\frac{12}{18}$ or $\frac{2}{3}$
				or 12 : 18 oe
	544×1.5^2			M1 for 1.5^2 or 2.25 or $\frac{9}{4}$ or 9 : 4 oe
				Also award for $\left(\frac{2}{3}\right)^2$ or $\frac{4}{9}$
				or 4 : 9 oe
		1224		A1 cao
				Total 3 marl

18	$\mathbf{x}(\mathbf{x}+6)$		3	B1	for <i>x</i> (<i>x</i> + 6)
	$\frac{\mathbf{x}(\mathbf{x}+0)}{(\mathbf{x}+0)(\mathbf{x}-0)}$				Accept $(x + 0)(x + 6)$
	(x + 0)(x - 0)			B1	for (x + 6)(x - 6)
		x		B1	сао
		$\overline{x-6}$			
					Total 3 marks

	Q	Working	Answer	Mark		Notes	
19	a	$\frac{3}{6} \times \frac{3}{6}$		2	M1	for $\frac{3}{6} \times \frac{3}{6}$ oe	
			$\frac{9}{2}$ or $\frac{1}{2}$ or		A1	Sample space method -	
			36 4 36			award 2 marks for a cor	rect answer,
						otherwise no marks	
	b			3	M1	for one of	SC
		$\frac{1}{6}\times\frac{5}{6}+\frac{2}{6}\times\frac{3}{6}$				$\frac{1}{6} \times \frac{5}{6}, \frac{2}{6} \times \frac{3}{6},$	M1 for one of
		or $\frac{1}{6} \times \frac{2}{6} + \frac{1}{6} \times \frac{3}{6} + \frac{2}{6} \times \frac{3}{6}$				$\frac{1}{6}\times\frac{2}{6},\ \frac{1}{6}\times\frac{3}{6},$	$\frac{1}{6} \times \frac{2}{5}, \frac{1}{6} \times \frac{3}{5},$
		or $\frac{3}{6} \times \frac{3}{6} + \frac{1}{6} \times \frac{2}{6}$				$\frac{3}{6} \times \frac{3}{6}$	$\frac{2}{6} \times \frac{3}{5}$
					M1	for sum of 2 or	M1 for
						3 products which, evaluated accurately,	$\frac{1}{6} + \frac{2}{6} \times \frac{3}{5}$ or
						gives the	1 2 1 3
						correct answer	$\overline{6}\overline{5}$ $\overline{6}\overline{5}$
							$+ \frac{2}{6} \times \frac{3}{5}$
			11		A1	Sample space method -	
			36			award 3 marks for a cor	rect answer,
						otherwise no marks.	
						Accept 0.305, 0.30, 0.3 but not 0.3	1, 0.305, 0.306 etc
							Total 5 marks

Q	Working	Answer	Mark		Notes
20	13° or 19° angle of elevation identified		6	B1	On diagram or implied by working
				M1	for 40 tan 13° or 9.2347
					rounded or truncated to at least 2 sf
					or any complete, correct method of finding
					the height of the flagpole
	$\tan 19^\circ = \frac{"9.2347"}{BC}$			M1	or for $\tan 71^\circ = \frac{BC}{"9.2347"}$
	(pc) "9.2347" 40 tan 13°			M1	for correct expression for BC,
	(BC =) tan 19° or tan 19°				which need not be evaluated
	or 26.819				eg also accept 40 tan 13° tan 71°
					If evaluated, accept 26.7 or 26.8
					or any value which rounds to 26.7 or 26.8
					9.2 26 718
					$\left(\frac{1}{\tan 19^\circ}\right) \rightarrow 20.718$
					<u>9.23</u> tan19° → 26.805)
	40 ² +"26.819" ²			M1	dep on first two M1s
					for $40^2 + "26819"^2$
					or for complete correct method of
					finding length of AC
		48.2		A1	for ans rounding to 48.2
					(48.1590)
					Award 6 marks for an answer
					which rounds to 48.2,
					if it has been obtained
					by a mathematically correct method
					Total 6 marks

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q	Working	Answer	Mark		Notes
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	21	$2x^2 = 3x + 14$ May be implied by second M1		5	M1	$y = 2\left(\frac{y-14}{3}\right)^2$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$2x^2 - 3x - 14 = 0$			M1	$2y^2 - 65y + 392 = 0$
or $\frac{3}{4} \pm \frac{\sqrt{121}}{4}$ or $\frac{65 \pm \sqrt{1089}}{4}$ or $\frac{65}{4} \pm \frac{\sqrt{1089}}{4}$ $x = \frac{7}{2}, x = -2$ A1 $x = \frac{7}{2}, y = \frac{49}{2}$ A1dep on all method marks $y = \frac{49}{2}, y = 8$ A1A		$(2x-7)(x+2)(=0)$ or $\frac{3\pm\sqrt{121}}{4}$			M1	(2y-49)(y-8)(=0)
or $\frac{65}{4} \pm \frac{\sqrt{1089}}{4}$ $x = \frac{7}{2}, x = -2$ A1 dep on all method marks $y = \frac{49}{2}, y = 8$ $x = \frac{7}{2}, y = \frac{49}{2}$ A1 dep on all method marks $x = \frac{7}{2}, y = \frac{49}{2}$		or $\frac{3}{4} \pm \frac{\sqrt{121}}{4}$				or $\frac{65 \pm \sqrt{1089}}{4}$
$x = \frac{7}{2}, x = -2$ A1dep on all method marks $y = \frac{49}{2}, y = 8$ $x = \frac{7}{2}, y = \frac{49}{2}$ A1dep on all method marks $x = \frac{7}{2}, y = \frac{49}{2}$						or $\frac{65}{4} \pm \frac{\sqrt{1089}}{4}$
$x = \frac{7}{2}, y = \frac{49}{2}$			$x = \frac{7}{2}, x = -2$		A1	dep on all method marks
$x = \frac{7}{2}, y = \frac{49}{2}$ A1 dep on all method marks $x = \frac{7}{2}, y = \frac{49}{2}$			2			$y = \frac{49}{2}, y = 8$
$x = \frac{7}{2}, y = \frac{49}{2}$ $x = \frac{7}{2}, y = \frac{49}{2}$					A1	dep on all method marks
			$x = \frac{7}{2}, y = \frac{49}{2}$			$x = \frac{7}{2}, y = \frac{49}{2}$
x = -2, y = 8 $x = -2, y = 8$			x = −2 , y = 8			x = -2, y = 8
Total 5 mar						Total 5 marks

Total 100 marks

4400/4H

London Examinations IGCSE

Mathematics

Paper 4H

Higher Tier

Friday 11 June 2010 - Morning

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Without sufficient working, correct answers may be awarded no marks.

You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 22 questions in this question paper. The total mark for this paper is 100. There are 24 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited.

Turn over

3.	 A spinner can land on red or blue or yellow. The spinner is biased. The probability that it will land on red is 0.5 The probability that it will land on blue is 0.2 (a) Imad spins the spinner once. Work out the probability that it will land on yellow. 	Leave
	 (b) Janet spins the spinner 30 times. Work out an estimate for the number of times the spinner will land on blue. 	
	(2) (Total 4 marks)	Q3

4.	(a)	Rosetta drives 85 kilometres in 1 hour 15 minutes. Work out her average speed in kilometres per hour.	Leave blank
		km/h (2)	
	(b)	Rosetta drives a total distance of 136 kilometres. Work out 85 as a percentage of 136	
	(c)	 (2) Sometimes Rosetta travels by train to save money. The cost of her journey by car is £12 The cost of her journey by train is 15% less than the cost of her journey by car. 	
		Work out the cost of Rosetta's journey by train.	
		£	Q4
		(Iotai / marks)	
			5

	 (2)	Q6
	(Total 4 marks)	
	(Total 4 marks)	
		7

8. Show that $1\frac{1}{2} \div 1\frac{1}{4} = 1\frac{1}{5}$	Leave blank
(Total 3 mar) 9. The depth of water in a reservoir increases from 14 m to 15.75 m. Work out the percentage increase.	Q8
	% 09
(Total 3 mar	% Q3 ks)

	x = 3x		Leave blank
11. Simplify fully	$\frac{1}{6} + \frac{1}{4}$		
			011
	 []	fotal 3 marks)	
			11

N 3 6 9 0 5 A 0 1 1 2 4

N 3 6 9 0 5 A 0 1 3 2 4

Turn over

N 3 6 9 0 5 A 0 1 4 2 4

Leave blank

14.

Diagram **NOT** accurately drawn

The area of the triangle is 6.75 cm^2 . The angle x° is acute. Find the value of *x*. Give your answer correct to 1 decimal place.

(Total 3 marks)

N 3 6 9 0 5 A 0 1 6 2 4

17 The diagram shows a sector of a circle radius 45 cr	n with angle 81°	Leave
A	i, with angle 64.	
45 cm 84°	Diagram NOT accurately drawn	
Calculate the area of the sector. Give your answer correct to 3 significant figures.		
	cm ²	Q17
	(Total 3 marks)	
18. 3.4 cm 110° 30° C	Diagram NOT accurately drawn	
Calculate the length of <i>AC</i> . Give your answer correct to 3 significant figures.		
	cm	018
	(Total 3 marks)	

Leave blank

19. A cone has slant height 4 cm and base radius r cm.

Diagram **NOT** accurately drawn

Calculate the value of *r*.

Ν	3	6	9	0	5	А	0	1	9	2	4	

Q19

r =

(Total 4 marks)

N 3 6 9 0 5 A 0 2 0 2 4

N 3 6 9 0 5 A 0 2 2 2 4

Summer 2010 IGCSE Mathematics (4400) Mark Scheme - Paper 4H

The following questions require a seen valid method before the accuracy mark can be awarded; Q1 , Q7, Q13, Q19, Q20c & d For other questions a correct answer implies a correct method.

Q		Working	Answer	Mark		Notes
1.	6y - 3y = 7 + 9				M1	or better; correctly collect y's & constants
(F13c)	3y = 16				M1	
			$5^{1}/_{3}$ oe or 5.33()	3	A1	2dp at least for decimal ans if 16/3 not seen
						(A1 dep on at least 1 M1)
						Total 3 marks

2.	(a)	360 - (108 to 112)			M1	
(F14a)		or 180 + (72 to 68)				
			248 to 252	2	A1	
(F14b)	(b)	360 - (180 - 50) (=360 -130)			M1	
		or 180 + 50				
		or 50 + 50 + 130	230	2	A1	cao
						Total 4 marks

3.	(a)	1 - (0.5 + 0.2) (= 1 - 0.7)			M1		
(F16a)			0.3oe	2	A1	decimals, fractions % ok.	
(F16b)	(b)	30 × 0.2			M1		
			6	2	A1	cao 6/30 =M1A0	
							Total 4 marks

Q	1	Working	Answer	Mark		Notes			
4.	(a)	85/1.25			M1	accept 85/75 or 85/1.15	accept 85000 in place of 85		
(F17a)			68	2	A1	cao			
(F17b)	(b)	85/136 × 100			M1				
			62.5	2	A1	cao			
(F17c)	(C)	12 × 0.15 (= 1.8) or 180p or 180 pence			M1	1 - 0.15 =0.85			
		12 - "1.8"			M1dep	"0.85" x 12			
			10.20oe	3	A1	allow 10.2			
							Total 7 marks		

5.	$(x^2 =) 3.3^2 + 1.8^2$	(= 14.13)			M1	M2 for $\int (3.3^2 + 1.8^2)$
(F18)	J̃"14.13"				M1	dep
			3.76	3	A1	awrt 3.76 isw for 3.758 or better in body.
						Total 3 marks

6.	(ai)		4, 5	1	B1	any order
(F19)						
(F19)	(aii)		6	1	B1	cao do not accept n(6)
(F19)	(bi)		(Q =) 3,4,6	1	B1	
			or 3,4,7			
(F19)	(bii)	sc B1 B0 for Q= 3,4, <u>6 or 7</u>	(R =) 3,4,7	1	B1ft	R=3,4,7 if Q=3,4,6 // R=3,4,6, if Q=3,4,7
		then R =3,4, <u>6 or 7</u>	or 3,4,6			
						Total 4 marks

Q		Working	Answer	Mark		Notes	
7.	(a)	7(x + 1) or 3(5x - 2)			M1	or doubled or mult out correctly	
(F20a)		7(x + 1) + 3(5x - 2)			M1 or doubled or mult out correctly		
						(and stated intention to +)	
			7(x + 1) + 3(5x - 2)	3	A1	i.e. $14(x + 1) + 6(5x - 2) = 68$ (can isw)	
			= 34oe				
(F20b)	(b)	7x + 7 or 14x + 14 or 15x - 6 or 30x - 12			M1	can be awarded from (a)	
		22x = 33 or $44x = 66$			M1	s.c. M1 for 22x = 67	
			1.5oe	3	A1	cao dep on M2 scored	
						Total 6 marks	

8.	3 5 6 5		B1	converting both correctly to improper fractions
(F21)	$\frac{-}{2}, \frac{-}{4}$ or $\frac{-}{4}, \frac{-}{4}$			
	$\frac{3}{2} \times \frac{4}{5}$ or $\frac{6}{4} \times \frac{4}{5}$ or $\frac{6}{4} \div \frac{5}{4}$ etc.		B1	Stated intention to multiply (if 2nd fraction inverted) or divide if denominators are the same (correct fractions)
	$\frac{6}{5}$ oe	3	B1	Must be improper fraction from previous calculation Ignore all decimal treatments.
				Total 3 marks

9.	15.75 - 14 (= 1.75)	$\frac{15.75}{14}$ × 100 (=112.5)		M1		14/15.75 x 100 (=88.9)
(F22)	$\frac{-1.75^{\circ}}{14}$ × 100	"112.5" - 100		M1dep	allow "1.75" ×100 (=11.1)	100 - "88.9" (=11.1)
			12.5	A1	cao	
						Total 3 marks

Q	1	Working	Answer	Mark			
10.	(a)	4 ÷ 6. 4 x 5.2 (0.625 x 5.2) or (5.2 ÷ 1.6 etc)			M1 M1 for proper use of sf 1.6 or 0.625 (or $x/4 = 5.2/6.4$ oe)		
			3.25	2	A1	cao	
	(b)		52	1	B1		
							Total 3 marks

11.	both denoms = same multiple of 12			M1	Any multiple of 12 acceptable
	$\frac{2x+9x}{12}$ or $\frac{4x+18x}{24}$ oe			M1	$\frac{2x}{12} + \frac{9x}{12}$ or $\frac{4x}{24} + \frac{18x}{24}$ (intention to add correct fractions)
		$\frac{11x}{12}$	3	A1	сао
					Total 3 marks

12.	(a)	$(\text{grad} =) -\frac{4}{8} \text{ oe } (= -0.5)$			B1	- 0.5 oe seen
		Y intercept = 4			B1	(can be implied from final answer)
						(correct y intercept)
			y = "-0.5"x + 4	3	B1ft	(ft grad only if $^{v}/_{h}$ seen) (correct form for equation)
						s.c. $y = 0.5x + 4$ without working = B2
	(b)		x <u>></u> -1 oe		B1	accept $x > -1$
			y ≥ x oe		B1	accept y > x
			y ≤ "-0.5x + 4" oe	3	B1ft	ft (a) accept y < "-0.5x + 4" must be a linear eqn in x
						Ignore contradictions
						sc B1 if all inequalities are facing the wrong way
				6		Total 6 marks

Q	<u>)</u>	Working Answer		Mark	Notes	
13.	(a)	$(x-6)(x-2)$ (= 0) or $\frac{8\pm\sqrt{6_4-4_8}}{2}$			M2	M1 for 1 correct factor or $(x + 6)(x + 2)$ or $\frac{8 \pm \sqrt{-8^2 - 4 \times 12}}{2}$ condone one sign error
			x = 6 or 2	3	A1	Ans only = $M0M0A0$ Answer depended on M2 achieved
	(b)	4x - 10x = 9 or 2y - 5y = 9 oe -6x=9 or -3y=9 oe			M1	correct sub/elimin to get 1 eqn 1 unknown
			-1.5, -3	3	A1 A1	Ans only = M0A0A0
						Total 6 marks

14.	$1/_2 \times 6 \times 4 \times \sin x^\circ = 6.75$ oe			M1	
	$\sin x^{\circ} = \frac{6.75}{12} \operatorname{or}^{9}_{16} \operatorname{or}^{0.5625}$			M1	isolating sin x
		34.2	3	A1	awrt 34.2
					Total 3 marks

15.	(a)	(6.8 x 20) or (0.75 x 1.6 x 20)			M1	correct fd value marked (no errors)
		24 + 136			M1	(1.5 × 16) + (4 × 34) M2 for 20 x 8 or 200 x 0.8
			160	3	A1	cao
	(b)	75 ÷ 3 (=25) or 75 ÷ 20 (=3.75)			M1	
			block 10-13 ht	2	A1	
			2.5cm			
						Total 5 marks

Q		Working	Answer	Mark		No	ites
16.	(a)		¹ /₄ on Black branch Correct tree structure		B1 B1	<\secord or	$<\leq$
			Labels and values correct	3	B1		
	(b)	$^{3}/_{4} \times ^{2}/_{3}$			M1 ft	Allow ft if ww selected	from tree diagram or $\frac{3}{4} \times \frac{3}{4}$
			1/2	2	A1	cao	
	(c)	${}^{3}/_{4} \times {}^{2}/_{3} \times {}^{1}/_{2}$ or ${}^{3}/_{4} \times {}^{1}/_{3}$ or ${}^{1}/_{4}$			M1	i.e WWB or WB or B (1 correct branch)	M2 for 1- WWW 1 - (3/4 x 2/3 x 1/2)
		$({}^{3}/_{4} \times {}^{2}/_{3} \times {}^{1}/_{2}) + ({}^{3}/_{4} \times {}^{1}/_{3}) + ({}^{1}/_{4})$			M1	WWB + WB + B	
			3/4	3	A1	ans only: M2 A1	
							Total 8 marks

17.	$^{84}/_{360}$ or $^{7}/_{30}$ or 0.23 $^{84}/_{360} \times \pi \times 45^2$	1480	3	M1 M1 A1	360 ÷ 84 or 4.2857 or 4.29 or 30/7 $π \times 45^2$ ÷ "4.29" awrt 1480 (3 sf) sc 1485 or 1490 from π=22/7 seen M2A1
					Total 3 marks

18.	$AC/_{sin110} = {}^{3.4}/_{sin30}$ Oe AC = 3.4 × ${}^{sin110}/_{sin30}$			M1 M1	awrt 6.39
		6.39	3	A1	
					Total 3 marks

Q	Working	Answer	Mark		Notes
19.	$\pi r x 4 + \pi r^2 = \frac{33}{4} \pi$ oe			M1	ie correct equation based on areas.
	$r^{2} + 4r - {}^{33}/_{4} = 0$ oe $(4r^{2} + 16r - 33 - 0)$			M1	correct equation = 0
	(2r - 3)(2r + 11) = 0	1.5	4	M1	$\frac{-4 \pm \sqrt{4^2 + 4 \times \frac{33}{4}}}{2} \text{ or } \frac{-16 \pm \sqrt{16^2 + 16 \times 33}}{8}$
				A1	not "1.5 and/or $-^{11}/_2$ " unless 1.5 clearly chosen A1 dependent on M3
					Total 4 marks

20.	(a)		49	1	B1	cao
	(b)	(7 - 1) ² or 36 seen			M1	
			f(x) ≥ 36 or y ≥ 36	2	A1	allow $f \ge 36$ $x \ge 36$: M1A0 (don't accept >)
	(C)	X				Do not accept g(1.2) = 6 method
		$\frac{1}{x-1} = 1.2$				
		x = 1 x = 1.2(x-1)			M1	
		x = 1.2(x 1)	6	2	A1	cao Answer only = M0 A0 Algebra method reqd.
	(di)	x			M1	у
		$y = \frac{1}{x-1}$				$x = \frac{1}{v-1}$
		y(x - 1) = x			M1	y'(y - 1) = y'
		y(x - 1) = x			////	$\lambda(y - 1) - y$
		xy - y = x				xy - x = y
		xy - x = y				
		x(y - 1) = y			M1	xy - y = x
		$\mathbf{x} = \mathbf{y}$				y(x - 1) = x
		$\frac{1}{y-1}$			///1	
			x	-		
			$\frac{1}{r-1}$	5	A1	
	(dii)		x 1 Y	1	B1	accept $[x/(x - 1)]/[(x/(x - 1) - 1]]$ do not isw
			<u>х</u>			Total 11 marks

Q		Working	Answer	Mark		Notes
21.	(a)		a-c oe	1	B1	
	(b)		trapezium	1	B1	
	(ci)		<i>k</i> = 1	1	B1	Accept {a + kc = a + c} or{ kc = c} all imply k=1
	(cii)		(mag) a = (mag) c	1	B1	Accept a = c or {a=kc} (imply sides are equal in length)
			oe			or a + kc bisects angle AOC
						Total 4 marks

22.	(a)	2352000			M1	figs 235 or 2352
			2.352 × 10 ⁴	2	A1	cao
	(b)	$a/100 \times 10^4$ +b x 10^4 (=c x 10^4)			M1	M1 for 0.01a seen or making index powers the same
						or a + 100b =100c or dividing both sides by 10^4
			0.01a + b oe	2	A1	
						Total 4 marks

Total: 100 marks

4400/3H

London Examinations IGCSE

Mathematics

Paper 3H

Higher Tier

Thursday 11 November 2010 – Morning

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Without sufficient working, correct answers may be awarded no marks.

You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 21 questions in this question paper. The total mark for this paper is 100. There are 24 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited.

Turn over

Answer ALL TWENTY ONE questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

1. The table shows information about the numbers of children in 25 families.

Number of children in the family	Frequency
1	4
2	9
3	8
4	0
5	4

Work out the mean number of children in these 25 families.

(Total 3 marks)

.....

Q1

2.	(a)	Expand	Leave blank
		(i) $4(c-3)$	
		(1)	
		(ii) $d(d^2 + 4)$	
	(1)	(2)	
	(b)	Factorise $3x - 2x^2$	
		(2)	Q2
		(Total 5 marks)	
4			

4		Leave blank
 Diagram NOT accurately drawn 		
A circular pond has radius 8.9 m.		
(a) Find the area of the pond.Write down all the figures on your calculator display.State the units of your answer.		
	(3)	
(b) Give the value of your area correct to 2 significant figures.		
	(1)	Q4
(Total 4 n	narks)	
6		

6. (a) Solve
$$7x+3=2x-4$$

(b) Solve $\frac{16-5y}{3}=2$
(c) $y = \dots$
(c) (10tal 6 marks)
(c) $y = \dots$
(c) $y =$

											Leave blank
7.	$\mathcal{E} = A =$	{Clothes {Mr Sm	s} ith's clothe	s}							
	B = C =	= {Hats} = {Mrs Ka	nchi'e hatel	,							
	U –		JSIII S Hats}		0.1						
	(a)	(1) Des	cribe the m	nembers o	of the set	$A \cap B$					
		(ii) How	v many me	mbers has	s the set	$A \cap C?$					
										(2)	
	(b)									7	
		A	В	C	E	E	Ø	\cap	\cup		
		Use a le	tter or sym	bol from	the box t	to make o	each of th	e followin	g a true sta	atement.	
		(i) <i>B</i> \	<i>C</i> =								
		(i) <i>B</i> ⊆(ii) Mr	$C = \dots$ Smith's fav	vourite shi	irt	A					
		(i) <i>B</i> ∪(ii) Mr	✓ C = Smith's faw	vourite shi	irt	A				(2)	Q7
		(i) <i>B</i> ⊂ (ii) Mr	$\mathcal{O} C = \dots$	ourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		(i) <i>B</i> ∪ (ii) Mr	$C = \dots$	vourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		 (i) B ⊆ (ii) Mr 	$\mathcal{P} C = \dots$	ourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		 (i) B ⊆ (ii) Mr 	$\mathcal{P} C = \dots$	vourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		 (i) B ⊆ (ii) Mr 	$\mathcal{P} C = \dots$	vourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		 (i) B ⊆ (ii) Mr 	$\mathcal{P} C = \dots$	ourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		 (i) B ⊆ (ii) Mr 	$\mathcal{P} C = \dots$	vourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		 (i) B ⊆ (ii) Mr 	$C = \dots$	ourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		 (i) B ⊆ (ii) Mr 	$\mathcal{P} C = \dots$	ourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		 (i) B ⊆ (ii) Mr 	$C = \dots$	ourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		 (i) B ⊆ (ii) Mr 	$\mathcal{P} C = \dots$	ourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		 (i) B ⊆ (ii) Mr 	$C = \dots$	vourite shi	irt	A			(Total 4	(2) 4 marks)	Q7
		 (i) B ⊆ (ii) Mr 	$C = \dots$	vourite shi					(Total 4	(2) 4 marks)	Q7

9. (a)	Three positive whole numbers are all different. They have a median of 5 and a mean of 4 Find the three numbers.	Leave blank
(b	(2) Find four whole numbers which have a mode of 5 and a median of 6	
	(2) (Total 4 marks)	Q9
		11 Irn ovei

н

Leave blank

15. A solid is made from a cylinder and a hemisphere. The cylinder has radius 1.5 cm and height 4 cm. The hemisphere has radius 1.5 cm.

Diagram **NOT** accurately drawn

Work out the total volume of the solid. Give your answer correct to 3 significant figures.

cm ³	Q15
(Total 5 marks)	

$\begin{bmatrix} 16 & A \text{ summa has convertion} & u = u^3 + 2u^2 - 24u \end{bmatrix}$	Leave blank
16. A curve has equation $y = x^2 + 3x^2 - 24x$	
(a) Find $\frac{dx}{dx}$	
(3)	
(b) Find the coordinates of the turning points of the curve.	
(5)	Q16
(Total 8 marks)	
	17 Irn over
H 3 7 7 7 0 A 0 1 7 2 4	

Here is a fair dice.	
It has six faces numbered 1, 2, 3, 4, 5 and 6 The dice shows a score of 6	
Hari throws the dice three times.	
(a) Work out the probability that the sum of the scores is 3	
	(2)
(b) Work out the probability that the dice shows a score of 1 on exactly one of the throws.	three
	(3)
(Total 5 ma	arks)

Leave blank

Q17

18. Make x the subject of $P = \frac{100 (y - x)}{x}$	Leave blank
$x = \dots$	Q18
(10tal 4 marks)	

		Leave blank
19. B		
	Diagram NOT accurately drawn	
6 cm 5 cm		
40°		
A C		
Give your answer correct to 3 significant figures.		
	(Total 6 marks)	
	(10tai 0 mai KS)	

21. (a)	$\mathbf{f}(x) = 2x + 1$	Leave blank
	Express the inverse function f^{-1} in the form $f^{-1}(x) = \dots$	
	$f^{-1}(x) = \dots$ (2)	
(b)	$q(x) = 2 + x \tag{2}$	
	$h(x) = x^2$	
	Solve the equation $hg(x) = h(x)$.	
	x –	
	$x = \dots $	Q21
	(Total 5 marks)	
	IOTAL FOR PAPER: 100 MARKS	
22		
22		

November 2010 IGCSE Mathematics (4400) Mark Scheme - Paper 3H

The following questions require a seen valid method before the accuracy mark can be awarded: Q6, Q12, Q14b, Q16b, Q21b

For all other questions a correct answer implies a correct method

						· · ·
Question		Working	Answer	Mark		Notes
1.		1x4 +2x9 +3x8 +5x4 (=66) "66" ÷ (4+9+8+4)	2.64	3	M1 M1 A1	Any 3 correct products with the intention to add dep allow 3 with working 3 without working = M0M0A0 2.6 without working =M2 A0
						Total 3 marks

2.	ai	4c - 12	1	B1		
	aii	$d^{3} + 4d$	2	B2	B1 each term	
	b	x(3 - 2x)	2	B2	B1 for x(expression with one correct term)	
						Total 5 marks

3.		BAC= 70		B1	(can be marked on diagram)
		isosceles triangle		B1	dep on prev B1. Must not contain incorrect statements.
		ABC = 40 or PAC = 110 or PA(CA ext)= 70		B1	look for values on diagram
		x = 40		B1	dep on reason. Either alternate (with ABC) or
					angles between parallel lines (=180) or alternate (with 110)
			4		or corresponding (with 70)
					answer only = B1B0B1B0
					Total 4 marks

Question		Working	Answer	Mark		Notes
4.	a	$\pi \times 8.9^2$			M1	or 3.14 \times 8.9 ² or $\frac{22}{7} \times$ 8.9 ²
			248.8		A1	awrt 248.7 to 248.9
			m ² or sq metres		B1	ind
			oe	3		
	b		250	1	B1ft	ft (a) if given to \geq 3 sig figs (ignore units). Do not award marks from part a).
						Total 4 marks

5.	a	${}^{6}/_{7} \times {}^{1}/_{4}$ ${}^{6}/_{28}$ or ${}^{3}/_{7} \times {}^{1}/_{2}$		2	M1 A1	or ${}^{6}/_{7} \div {}^{28}/_{7}$ answer $\equiv {}^{3}/_{14}$ (but not = ${}^{3}/_{14}$) or cancelling
	b	⁵¹ / ₁₅ and ²⁵ / ₁₅ any multiple o ⁵¹ / ₁₅ - ²⁵ / ₁₅ correct fractions s ²⁶ / ₁₅	f 15 valid ubtracted	3	M1 M1 A1	$^{6}/_{15}$ and $^{10}/_{15}$ dep $^{-4}/_{15}$ or $^{6}/_{15}$ - $^{10}/_{15}$ (dep on M2) 2 - $^{4}/_{15}$ oe (but not $1^{11}/_{15}$)
						Total 5 marks

6.	a	7x - 2x = -4 - 3			M1	correct gathering of terms
		5x = -7			M1	
			-1.4	3	A1	Accept -7/5 (not -7 ÷ 5) No working: M0A0
	b	16 - 5y = 2 x 3			M1	16/3 - 2 =5y/3
		-5y = -10 oe			M1	10/3 = 5y/3
			2	3	A1	Accept -10/-5 (not -10 ÷ -5) No working: M0A0
						Total 8 marks
Que	stion	Working	Answer	Mark		Notes
-----	-------	---------	-----------------	------	----	--
7.	ai		Mr Smith's hats	1	B1	
	aii		0	1	B1	none or zero, Ø or { }, "empty set" etc;
						allow "There aren't any"
	bi		В	1	B1	
	bii		E	1	B1	
						Total 4 marks

8.	a	^x / ₉ = tan 36° or tan 36° or 0.726	•••		M1	$x^{2} + 9^{2} = (9/\cos 36)^{2}$ oe (e.g. $x^{2} + 9^{2} = 11.12^{2}$)
		seen			M1	$\int ((9/\cos 36)^2 - 9^2)$
		9 × tan 36°	6.54	3	A1	awrt 6.54 use isw if better seen in body
	b	$10^2 = 4.5^2 + y^2$ oe			M1	or 10 ² - 4.5 ²
		$\int (10^2 - 4.5^2)$ or $\int 79.75$			M1	M2 for 4.5 x tan (cos ^{-1 4.5} / $_{10}$)
			8.93	3	A1	awrt 8.93 use isw if better seen in body
						Total 6 marks

9.	a	1, 5, 6	2	B2	B1 three positive whole nos with med 5 or mean 4
	b	5, 5, 7, x	2	B2	x > 7
					B1 four nos with single mode 5 or med 6
					Total 4 marks

10.	a	14 × 15 ÷ 21 oe			M1	Correct use of s.f. 2/3 or 3/2 or 5/7 or 7/5
			10	2	A1	
	b	18 × 21 ÷ 15 oe			M1	Correct use of s.f.
						5/7, 7/5, 6/5, 5/6 , 18/"10", "10"/18, 14/"10", "10"/14
			25.2	2	A1	cao
						Total 4 marks

Que	stion	Marking	Answer	Mark		Notes
11.	a	Read at cf = 20 or 20.5			M1	
				2	A1	answer only = M1 A1
			15 →15.5			
	b	Read at cf = 10 & 30			M1	
				2	A1	
						or $34 \rightarrow 35$, and $6 \rightarrow 7$ seen
			28 → 30			
						answer only = M1A1
	С		4	1	B1	
						Total 5 marks

12.	2 lines where coefficients of x			M1	e.g 6x -15y=39, or 6x -15y=39
	or y are equal				6x + 3y = 3 $30x + 15y = 15$
					and then add/subtract (condone 1 arithmetic error)
					leads to 18y= -36 or 36x = 54
					or make x or y subject and substitute correctly
		x = 1.5, y = -2	3	A1 A1	
					Total 3 marks

13.	a	(x - 5)(x - 3)	2	B2	B1 for one bracket correct or $(x+5)(x+3)$
	b	(x - 7)(x + 7)	1	B1	
					Total 3 marks

Que	stion	Working	Answer	Mark		Notes
14.	a		0.2 to 0.3, 3.7 to	2	B2	inclusive; B1 for each
			3.8			
	b	Draw $y = x + 1$			M1	for $0 \le x \le 5$
			0.4 to 0.5 &		A1	inclusive dep on M1
			4.5 to 4.6	3	A1	inclusive dep on M1
						Total 5 marks

15.	$\pi \times 1.5^2 \times 4$ (= 28.2)			M1	Volume of cylinder
	$^{4}/_{3} \times \pi \times 1.5^{3}$ (=14.1)			M1	Volume of sphere
	"14.1" × 0.5 (=7.06)			M1	0.5 × their sphere vol
	cyl vol + hemisphere vol			M1	dep M1M1
					(allow cyl volume + sphere volume if hemisphere not
		35.3	5	A1	calculated)
					35.3 to 35.4 (not 11.25π)
					Total 5 marks

16.	a		$3x^2 + 6x - 24$	3	B3	B1 each term
	b	$"3x^2 + 6x - 24" = 0$			M1ft	Must be a 3 term quadratic
		(3x + 12)(x - 2) oe			M1ft	or " $\frac{-6\pm\sqrt{6^2-4x3x-24}}{6x^2-4x^2}$ " condone 1 sign error
						2x3
		x = -4 or 2			A1	cao
		sub both x values			M1ft	
			(-4, 80), (2, -28)	5	A1	cao (needs first 2 M's)
						Total 8 marks

Que	stion	Working	Answer	Mark		Notes
17	a	$(1/6)^3$			M1	
			¹ / ₂₁₆ oe	2	A1	(or 0.00463 or better)
	b	$\frac{1}{6} \times (\frac{5}{6})^2$			M1	1 correct combination 1, ~1, ~1
		$3 \times \frac{1}{6} \times (\frac{5}{6})^2$			M1	oe
			⁷⁵ / ₂₁₆ oe	3	A1	25/72 (or 0.347 or better)
						Total 5 marks

18.	$xP = 100(y - x) \text{ or } P = \frac{100y - 100x}{x}$			M1 M1	P = 100y/x - 100x/x P + 100 = 100y/x
	xP = 100y - 100x x(P + 100) = 100y	100 <i>y</i>		M1	<i>x</i> (<i>P</i> +100) =100y
		$\overline{P+100}$ oe	4	A1	
					Total 4 marks

19.	$\frac{\sin A}{5} = \frac{\sin 40}{6} \text{oe}$ sin $A = \frac{5\sin 40}{6} \text{or } 0.535$ A = 32.3 to 32.4 (B=) 180- 40 - "32.4" (= 107.6 to 107.7) $0.5 \times 5 \times 6 \times \sin $ "107.6" (2 sides & a trapped angle)	14.3	6	M1 M1 M1 ft M1 ft A1	dep on M2. or Height = 5 sin 40 (=3.21) and base = 6 cos " 32.4 " + 5 cos 40 (= 8.9) 0.5 x 3.21 x "8.9" (must be a correct calculation for height and base) awrt 14.3
					Total 6 marks

Question		Working	Answer	Mark		Notes
20.	a	2 ⁴ or -4 seen			M1	
			2 ⁻⁴	2	A1	
	b	2^3 or $1/_3$ seen			M1	
			8 ^{1/3}	2	A1	accept 8 ^{0.3rec}
	с	$\frac{(a+\sqrt{a})}{\sqrt{a}} x \frac{\sqrt{a}}{\sqrt{a}}$			M1	multiply numerator & denominator by $\int a$ or $(a \int a + a)/a$
			<i>√a</i> + 1	2	A1	
						Total 6 marks

21.	a	y = 2x + 1			AA 1	x = 2y + 1	
		$x = \frac{x}{2}$	f = 1 (x) (x-1) (<i>I</i> M I	$y = \frac{x}{2}$	
			$f(x) = \sqrt{7_2}$ oe	2	A1	answer only = M1A1	
	b	$(2 + x)^2 = x^2$			M1	M1 for $(2 + x)^2$	
		$4 + 4x + x^2 = x^2$			M1	or $2 + x = -x$ (from rooting both sides)	
			<i>x</i> = -1	3	A1	Answer only = M0A0A0	
							Total 5 marks

			TOTAL FOR PAPER : 100 MARKS

4400/4H

London Examinations IGCSE Mathematics

Examiner's use only					
Team Leader's use only					

Paper 4H

Higher Tier

Tuesday 16 November 2010 – Morning

Time: 2 hours

Materials required for examination

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Items included with question papers

Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Without sufficient working, correct answers may be awarded no marks.

You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.

If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 22 questions in this question paper. The total mark for this paper is 100. There are 20 pages in this question paper. Any blank pages are indicated. You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited.

Turn over

Answer ALL TWENTY TWO questions.	Leave blank
Write your answers in the spaces provided.	
You must write down all stages in your working.	
1. (a) Use your calculator to work out the value of	
$\frac{3.7 \times 2.9}{5.3} + 1.4$	
Give your answer as a decimal. Write down all the figures on your calculator display.	
(2)	
(b) Give your answer to part (a) correct to 2 decimal places.	
(1)	01
 Anya flew from Kuala Lumpur to Singapore. The average speed for the journey was 248 km/h. The journey time was 1 hour 15 minutes. Work out the distance from Kuala Lumpur to Singapore. 	
km (Total 3 marks)	Q2
	3 Irn over

4.	A bag contains some shapes. Each shape is a circle or a triangle or a square. Lewis takes at random a shape from the bag. The probability that he will take a circle is 0.3 The probability that he will take a triangle is 0.1 (a) Work out the probability that he will take a square. (2) (b) Work out the probability that he will take a shape with straight sides.	Leave blank
	(2) Grace takes at random one of the shapes from the bag and then replaces the shape. She does this 160 times. (c) Work out an estimate for the number of times she will take a circle.	Q4
	(Total 6 marks)	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 'urn over

8.	The scale of a map is 1 : 50 000 On the map, the distance between two schools is 19.6 cm.	Leave blank
	On the map, the distance between two schools is 19.6 cm. Work out the real distance between the schools. Give your answer in kilometres.	
	km (Total 3 marks)	Q8
9.	y_{10}	
		Q9
0	(Total 3 marks)	

Turn over

11.	Tom buys a painting for \$1350	Leave blank
	He sells it for \$1269	
	(a) Work out his percentage loss.	
	%	
	(3)	
	Kelly bought a boat. Later, she sold the boat for \$9519 She made a profit of 14%.	
	(b) Work out the original price of the boat.	
	\$	011
	(Total 6 marks)	
l		

12. The line L cuts the <i>v</i> -axis at $(0, 5)$.	Leave blank
L also passes through the point (2, 1).	
(a) Find the equation of the line L.	
(3)
(b) Find the equation of the line which is parallel to L and which passes through the poin	t
(3, 0).	
) 012
(Total 5 marks)	
13. The size of each interior angle of a regular polygon is 11 times the size of each exterio angle.	r
Work out the number of sides the polygon has.	
	Q13
(Total 4 marks)	
	11 Turn over
H 3 7 7 7 1 A 0 1 1 2 0	

Leave blank (1)

15.	(a)	Work out $(9 \times 10^8) \times (4 \times 10^6)$
		Give your answer in standard form.

- (b) $x = 7 \times 10^m$ and $y = 5 \times 10^n$, where *m* and *n* are integers.
 - (i) It is given that $xy = 3.5 \times 10^{12}$ Show that m + n = 11

(ii) It is also given that $\frac{x}{y} = 1.4 \times 10^{27}$

Find the value of *m* and the value of *n*.

18. Solve $3x^2 + 8x + 2 = 0$ Give your solutions correct to 3 significant figures.	Leave blank
	Q18
(lotal 3 marks)	

20. Solve the simultaneous equations

$$y = x^2$$
$$y = 7x - 10$$

Leave blank

	Q2(0
••••••	\square	

(Total 5 marks)

9

Turn over

	Leave blank
22. Simplify fully $1 + \frac{x^2 + x - 6}{(x+4)(x-2)}$	
	022
(Total 4 mar	
TOTAL FOR PAPER: 100 MAR	KS
END	

November 2010 IGCSE Mathematics (4400) Mark Scheme - Paper 4H

Apart from Questions 18, 20 and 21(b)(ii) (where the mark scheme states otherwise), the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark		Notes
1. a	$\frac{10.73}{5.3} + 1.4 = 2.0245 + 1.4$		2	M1	for 10.73 or 2.0245 or 1.6014
		3.424528302		A1	for at least first 5 figures
b		3.42	1	B1	ft from (a) if non-trivial
					Total 3 marks

2.	248 × 1.25 oe		3	M2	M1 for 248 × 1.15 or 285.2 or 248 × 75 or 18 600
		310		A1	CaO
					Total 3 marks

3. a	(7, 6)	2	B2	B1 for 7 B1 for 6
b	<i>C</i> (3, 10) <i>D</i> (11, 2)	2	B2	B1 for (3, 10) B1 for (11,2)
	or <i>C</i> (11, 2) <i>D</i> (3, 10)			
				Total 4 marks

Question	Working	Answer	Mark		Notes
4 a	1 - (0.3 + 0.1)		2	M1	
		0.6		A1	сао
b	0.1 + "0.6" or 1 – 0.3		2	M1	do not award if ans to (a) > 1
		0.7		A1	ft from (a) if ans to (b) < 1
с	0.3 × 160		2	M1	for 0.3 × 160 or 0.3 × 200 or $\frac{48}{60}$
		48		A1	cao
					Total 6 marks

5.	50 × 0.72 × 221		2	M1	for × 0.72 or × 221
		7956		A1	сао
					Total 2 marks

6.	a	$\frac{2}{3} \times 2.6 \times 1.5^2$		2	M1	for correct substitution
			3.9		A1	cao
	b	$35 = \frac{2}{3} \times h \times 2.5^{2}$ or (<i>h</i> =) $\frac{35}{\frac{2}{3} \times 2.5^{2}}$ oe		2	M1	for correct substitution or correct rearrangement
			8.4		A1	cao
	с	$y^2 = \frac{3V}{2h}$		2	M1	for $y^2 = \frac{3V}{2h}$ oe
			$\sqrt{\frac{3V}{2h}}$		A1	for $\sqrt{\frac{3V}{2h}}$ or $\pm \sqrt{\frac{3V}{2h}}$ oe
						Total 6 marks

Question	Working	Answer	Mark		No	otes
7. a		Q correct Vertices (6, 10) (9, 10) (6, 16)	3	В3	B2 for translatio shape or 2 corre B1 for right-angl base 3 or height orientation as P	n of correct ct vertices ed triangle with 6 in the same
b		R correct Vertices (10, 2) (13, 2) (10, 8)	2	B2	for R correct or B1 for translatio right or 8 down	ft their Q n of 4 to the ft their Q
C	Enlargement with scale factor	3 and centre (1, 8)	2	B2	B1 for Enlargement 3 B1 for (1, 8)	Award no marks if answer is not a single transfn
						Total 7 marks

8.	$\frac{19.6 \times 50000}{100 \times 1000}$		3	M1	for 19.6 × 50000 or 980 000 or number with digits 98 or $\frac{50000}{100 \times 1000}$ or ½ km
				M1	for completing calculation $\frac{"980000"}{100 \times 1000}$ or 19.6 × $\frac{1}{2}$
		9.8		A1	сао
					Total 3 marks

Question	Working	Answer	Mark		Notes
9.		<u>x ></u> 1	3	B1	for <u>x ></u> 1 or <u>x</u> > 1 oe
		<u>у ></u> 2		B1	for <u>y ></u> 2 or <u>y</u> > 2 oe
		<i>x</i> + <i>y</i> <u><</u> 8 oe		B1	for x + y < 8 or x + y < 8 oe
					SC B1 if all inequalities reversed
					Total 3 marks

10.	$\angle ACO = 21^{\circ} \text{ or } \angle COB = 42^{\circ}$		4	B1	
	or $\angle ACB = 90^{\circ}$				Angles may be stated or marked
	$\angle OCP = 90^{\circ} \text{ or } \angle CBP = 111^{\circ}$			B1	on diagram
	or $\angle BCP = 21^{\circ}$				
	180 - 21 - (90 + 21) or 180 - 42 - 90			M1	
	or 180 – 21 – 111				
		48		A1	Award 4 marks for an answer of
					48, unless obtained by a clearly
					incorrect method.
					Total 4 marks

Question	Working	Answer	Mark		Notes
11. a	1350 - 1269 or 81		3	M1	or or
	$\frac{81}{1350} \times 100$ or $\frac{81}{1269} \times 100$			M1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
					" 0
					Award both method marks for an
					answer of 6.4, 6.38 or better.
		6		A1	cao Do not award this mark if a denominator of 1269 used.
b	$\frac{9519}{1.14}$ or $9519 \times \frac{100}{114}$ oe		3	M2	M2 for $\frac{9519}{1.14}$ or $9519 \times \frac{100}{114}$ oe M1 for $\frac{9519}{114}$, 83.5 seen, 114% = 9519, $\frac{9519}{x} = 1.14$, 9519 = 1.14x
		8350		A1	cao
					Total 6 marks

Question	Working	Answer	Mark		Notes	
12. a	5-1		3	M1	for clear attempt	SC If MOAO,
	$-\frac{1}{2}$ oe				to use	award B2 for
					vert difference	linear
					horiz difference	expression in
	<i>m</i> = -2			A1	for <i>m</i> = -2	which the
						coefficient
						of x is -2
						or for
						L = linear
						expression in
						which the
						coefficient
						of x is -2 oe
						inc L+2 <i>x</i> = <i>k</i>
		<i>y</i> = -2 <i>x</i> + 5 oe		B1	ft from their m	
					SC If MOAO, award B	1 for
					<i>y</i> = <i>mx</i> + 5	
b	y = -2x + c		2	M1	$c \neq 5$ SC If M	0, award B1
		y = -2x + 6 oe		A1	ft from (a) for $-2x$	r + 6 or
		-			L = -2x	r + 6 ft
					1	Fotal 5 marks

Question	Working	Answer	Mark		Notes
13.	11x + x = 180 or 12x = 180 or for $\frac{360}{n}$ or $\frac{180(n-2)}{n}$		4	M1	May be implied by $\frac{180}{12}$ or 15
	(exterior angle =) 15 or $\frac{360}{n} \times 11 = \frac{180(n-2)}{n}$ oe or $180 - \frac{360}{n} = 11 \times \frac{360}{n}$			A1	
	$\frac{360}{"15"} \text{ or simplified correct equation}$ in which <i>n</i> appears only once eg 360 × 11 = 180(<i>n</i> - 2) or 360 × 11 = 180 <i>n</i> - 360 or 12 × $\frac{360}{n}$ = 180			M1	
		24		A1	cao Award 4 marks for an answer of 24 unless clearly obtained by an incorrect method.
					Total 4 marks

Question	Working	Answer	Mark		Notes
14. a	$\frac{\frac{4}{9}}{\frac{3}{9}}$ Red $\frac{\frac{3}{9}}{\frac{2}{9}}$ White $\frac{\frac{2}{9}}{\frac{9}{9}}$ Blue	$ \frac{3}{8} \\ \frac{3}{8} \\ \frac{3}{8} \\ White $ $ \frac{2}{8} \\ Blue $ $ \frac{4}{8} \\ \frac{2}{8} \\ White $ $ \frac{4}{8} \\ \frac{2}{8} \\ White $ $ \frac{4}{8} \\ \frac{3}{8} \\ Red $ $ \frac{4}{8} \\ \frac{3}{8} \\ White $ $ \frac{4}{8} \\ \frac{3}{8} \\ White $ $ \frac{4}{8} \\ \frac{3}{8} \\ Blue $	3	B3	B1 $\frac{3}{9}$ and $\frac{2}{9}$ correct on LH branches B2 All RH branches correct (B1 one RH branch correct ie 3 probabilities)
b	$\frac{4}{9} \times \frac{2}{8} + \frac{2}{9} \times \frac{4}{8}$ oe	$\frac{16}{72}$ or $\frac{2}{9}$ oe	3	M1 M1 A1	for $\frac{4}{9} \times "\frac{2}{8}"$ Award for correct use of probabilities (must be < 1)or " $\frac{2}{9}" \times "\frac{4}{8}"$ oe for sum of both productsAward for correct use of probabilities (must be < 1)for $\frac{16}{72}$ or $\frac{2}{9}$ oeFor
					Total 6 marks

Que	stion	Working	Answer	Mark		Notes
15.	a		3.6 × 10 ¹⁵	1	B1	cao
	bi	Correct expression for xy stated or clearly implied with 7 × 5 evaluated eg $35 \times 10^{m+n}$ $3.5 \times 10^{(1)} \times 10^m \times 10^n$		5	M1	
		States or clearly implies that $xy = 3.5 \times 10^{m+n+1}$ oe or $3.5 \times 10^{(1)} \times 10^{m+n}$ oe or $m+n+1^*$			A1	SC If A1 not scored, award B1 for 35×10^{11} seen. *dep on $(3.5 \times) 10^{(1)} \times 10^{m} \times 10^{n}$ $= (3.5 \times) 10^{12}$
	bii	<i>m</i> – <i>n</i> = 27 oe			B1	for $m - n = 27$ oe inc $m = n + 27$
		2 <i>m</i> = 38 or 2 <i>n</i> = -16			M1	Adding or subtracting m + n = 11 and $m - n = 27$
			<i>m</i> = 19 <i>n</i> = -8		A1	for both values correct Award 3 marks for both values correct, unless clearly obtained by an incorrect method.
						Total 6 marks

Question	Working	Answer	Mark		Notes
16. a	$P = \frac{k}{V}$		3	M1	for $P = \frac{k}{V}$ but not for $P = \frac{1}{V}$
					Also award for a correct equation in <i>P</i> , <i>V</i> and a constant
					or <i>P</i> = some numerical value $\times \frac{1}{V}$
	$18 = \frac{k}{24}$			M1	for $18 = \frac{k}{24}$ or for correct
					substitution into an equation
					which scores first method mark
					evaluation of the constant)
		$P = \frac{432}{V}$		A1	Award 3 marks if answer is $P = \frac{k}{V}$
					but <i>k</i> is evaluated as 432 in <i>any</i> part
b	$3V^2 = 432 \text{ or } 3V \times V = 432$		2	M1	for $3V^2 = 432$ or $3V \times V = 432$ or $V^2 = 144$
		12		A1	Also accept ±12
					Total 5 marks

17. a		18	1	B1	сао
b	(2.5-4) bar height 19 little squ	ares	2	B1	Allow <u>+</u> ½ sq
	(4-6) bar height 6 little squares			B1	Allow <u>+</u> ½ sq
					Total 3 marks

Question	Working	Answer	Mark		Notes
18.	$\frac{-8 \pm \sqrt{8^2 - 4 \times 3 \times 2}}{2 \times 3}$ or for this expression with one or more of 8^2 , $4 \times 3 \times 2$ or 2×3 correctly evaluated		3	M1	for correct substitution
	obtains $\sqrt{40}$ or $\sqrt{64 - 24}$ or $2\sqrt{10}$ or 6.32			M1	(independent)for correct simplification of discriminant
		-0.279, -2.39		A1	dep on <u>both</u> method marks for values rounding to -0.279 and -2.39 (-0.27924, -2.38742)
					Total 3 marks

Que	stion	Working	Answer	Mark		Notes
19.	a	$AE \times 4 = 16 \times 5$		2	M1	
			20		A1	cao
	bi		12	5	B1	cao
	bii	$5^2 + 8^2 - 12^2$ $5^2 + 0F^2 - "12"^2$		M2	M1 for	
		$(\cos x^{\circ} =) \frac{2 \times 8 \times 5}{2 \times 8 \times 5}$ or $\frac{2 \times 6 \times 5}{2 \times 6 \times 5}$			12 ² = !	$5^2 + 8^2 - 2 \times 8 \times 5 \cos x^\circ$
		$\frac{1}{\sqrt{2}} \cdot \frac{9^2}{\sqrt{2}} \cdot \frac{10^2}{\sqrt{2}}$			or	
		$(\cos \angle OEC =) \frac{10^{+} + 8^{-} - 12}{2 \times 16 \times 8}$ or			"12" ² =	$=5^2 + OE^2 - 2 \times OE \times 5 \cos x^\circ$ or
		$16^2 + 0E^2$ "12" ²			$12^2 = 1$	$6^2 + 8^2$
		$\frac{10 + 02 - 12}{2 \times 16 \times 0E}$				$Z \times 16 \times 8 \times \cos \angle OEC$
		$Z \times 10 \times OE$			"12" ² =	$= 16^2 + OE^2$
		or, using the midpoint of <i>CD</i> , $\cos \angle OEC = \frac{5.5}{8}$				$-2 \times 16 \times OE \times \cos \angle OEC$
		5.5				
		or $\frac{\partial H}{\partial F}$				
		or complete, correct method of finding				
		sin $\angle OEC$ or tan $\angle OEC$				
			133.4		A2	for answer rounding to 133.4
						(133.4325)
						A1 for $\frac{-55}{80}$ oe or -0.6875
						If $\angle OEC$ is used, award A1 for
						$\frac{176}{256}$ oe or 0.6875 or value
						rounding to 46.6 seen.
						If midpoint of CD is used,
						award A1 for $\frac{5.5}{8}$ oe or 0.6875
						or value rounding to 46.6 seen.
						Total 7 marks
Question	Working	Answer	Mark		Notes	
----------	----------------------------	-----------------------------	------	----	-----------------------------------	
20.	$x^2 = 7x - 10$		5	M1	$(y+10)^2$	
	(may be implied by 2nd M1)				$y = \left(\frac{y+10}{7}\right)$	
	$x^2 - 7x + 10$ (= 0) oe			M1	$y^2 - 29y + 100 (= 0)$ oe	
	(x - 5)(x - 2) (= 0) oe			M1	(y-4)(y-25) (= 0)	
	$7\pm\sqrt{9}$				$29 \pm \sqrt{441}$	
	$7\pm\sqrt{49-40}$				$29 \pm \sqrt{841 - 400}$	
	or <u>2</u>				or2	
	7 ± 3				29 ± 21	
		<i>x</i> = 2, <i>x</i> = 5		A1	<i>y</i> = 4, <i>y</i> = 25	
					dep on all method marks	
		x = 2, y = 4		A1	dep on all method marks (may	
		<i>x</i> = 5, <i>y</i> = 25			be implied by 2nd M1)	
					Total 5 marks	

21.	ai		a + b	3	B1	
	aii		3a - b		B1	
	aiii	³ ⁄ ₄ a + ³ ⁄ ₄ b or b + ¹ ⁄ ₄ (3 a - b) or 3 a - ³ ⁄ ₄ (3 a - b) oe		B1		
	bi	collinear, in a (straight) line oe	2	B1		
	bii		3⁄4		B1	dep on B1 in both (a)(i) and (a)(iii)
						Total 5 marks

Question	Working	Answer	Mark		Notes
22.	$1 + \frac{(x+3)(x-2)}{(x+4)(x-2)}$ or $\frac{(x+4)(x-2) + x^2 + x - 6}{(x+4)(x-2)}$ or $\frac{(x+4)(x-2) + x^2 + x - 6}{x^2 + 2x - 8}$		4	B1	for correct factorisation or for correct single fraction, even if unsimplified
	$1 + \frac{x+3}{x+4} \text{ or } \frac{2x^2 + 3x - 14}{(x+4)(x-2)}$ or $\frac{2x^2 + 3x - 14}{x^2 + 2x - 8}$ or $\frac{(x-2)[(x+4) + (x+3)]}{(x+4)(x-2)}$			B1	
	$\frac{x+4+x+3}{x+4} \text{ or } \frac{x+4}{x+4} + \frac{x+3}{x+4}$ or $\frac{(2x+7)(x-2)}{(x+4)(x-2)}$	27		B1	
		$\frac{2x+7}{x+4}$		ΒΊ	
					Total 4 marks

						TOTAL FOR PAPER: 100 MARKS
--	--	--	--	--	--	----------------------------

Write your name here				
Surname	Other nam	es		
Edexcel IGCSE	Centre Number	Candidate Number		
Mathema Paper 3H	tics A			
		Higher Tier		
Monday 6 June 2011 – Afte	ernoon	Paper Reference		
Time: 2 hours		4MA0/3H		
You must have: Ruler graduated in centimetres ar pen. HB pencil, eraser, calculator, 1	nd millimetres, protractor, cor Fracing paper may be used.	mpasses,		

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided there may be more space than you need.
- Calculators may be used.
- You must **NOT** write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ►

Answer ALL TWENTY THREE questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

 $1 \quad (a) \ Use \ your \ calculator \ to \ work \ out \ the \ value \ of$

$$\frac{24.1}{8.4-7.8} - 6.2^2$$

Write down all the figures on your calculator display.

(2)

(b) Give your answer to part (a) correct to 3 significant figures.

(1)

(Total for Question 1 is 3 marks)

3

Every morning, Samath has one glass of fruit juice with his breakfast. He chooses at random orange juice or pineapple juice or mango juice. The probability that he chooses orange juice is 0.6	
The probability that he chooses pineapple juice is 0.3	
(a) Work out the probability that he chooses mango juice.	
	(2)
(b) There are 30 days in April.	
Work out an estimate for the number of days in April on which Samath chooses orange juice.	
	(2)
(Total for Question 4 is 4 m	arks)
Show that $\frac{-}{6} - \frac{-}{4} = \frac{-}{12}$ (Total for Question 5 is 2 m	uarks)
	Every morning, Samath has one glass of fruit juice with his breakfast. He chooses at random orange juice or pineapple juice is 0.6 The probability that he chooses pineapple juice is 0.3 (a) Work out the probability that he chooses mango juice. (b) There are 30 days in April. Work out an estimate for the number of days in April on which Samath chooses orange juice. (Total for Question 4 is 4 m Show that $\frac{5}{6} - \frac{3}{4} = \frac{1}{12}$ (Total for Question 5 is 2 m

8	$\mathscr{E} = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ $A = \{\text{odd numbers}\}$ $P = \{\text{prime numbers}\}$
	List the members of the set
	(i) $A \cap P$,
	(ii) $A \cup P$.
-	(Total for Question 8 is 2 marks)
9	Ella invested \$8000 for 3 years at 5% per annum compound interest.
	Calculate the value of her investment at the end of 3 years.
	\$
_	(Total for Question 9 is 3 marks)
	<u>^</u>

1

10 This rule can be used to work out the fare, in dirhams, for a taxi journey in Dubai.

Find a formula for the fare, C dirhams, for a taxi journey of d kilometres.

(Total for Question 10 is 3 marks)

11	The table show	s information	about the	weights o	of 80 parcels.
----	----------------	---------------	-----------	-----------	----------------

Weight (w kg)	Frequency
$0 < w \leqslant 2$	8
$2 < w \leqslant 4$	14
$4 < w \leqslant 6$	26
$6 < w \leqslant 8$	17
$8 < w \leqslant 10$	10
$10 < w \leq 12$	5

(a) Work out an estimate for the total weight of the 80 parcels.

..... kg

(3)

(b) Complete the cumulative frequency table.

Weight (w kg)	Cumulative frequency
$0 < w \leq 2$	
$0 < w \leqslant 4$	
$0 < w \leqslant 6$	
$0 < w \leqslant 8$	
$0 < w \leqslant 10$	
$0 < w \leqslant 12$	

(1)

15 (a) Here is a shape made from a rectangle and a semicircle.

The length of the rectangle is 7.1 cm. The radius of the semicircle is 2.7 cm.

Work out the area of the shape. Give your answer correct to 3 significant figures.

..... cm²

Diagram **NOT** accurately drawn

(b) Here is another shape made from a rectangle and a semicircle.

Diagram **NOT** accurately drawn

The length of the rectangle is L cm. The radius of the semicircle is r cm.

The perimeter, P cm, of the shape is given by the formula

 $P = \pi r + 2L + 2r$

Make *r* the subject of the formula $P = \pi r + 2L + 2r$.

(Total for Question 15 is 7 marks)

18

Diagram **NOT** accurately drawn

Triangle *ABC* is right-angled at *B*. Angle $BAC = 32^{\circ}$ AC = 47 m. *D* is the point on *AB* such that angle $BDC = 51^{\circ}$

Calculate the length of *BD*. Give your answer correct to 3 significant figures.

..... m

(Total for Question 18 is 5 marks)

19 <i>P</i> is directly proportional to the cube of <i>Q</i> . When $Q = 15$, $P = 1350$	
(a) Find a formula for P in terms of Q .	
	P =(3)
(b) Calculate the value of P when $Q = 20$	
	$P = \dots$
	(1)
	(Total for Question 19 is 4 marks)
20 10^n 1 $1 \sqrt{10} \le a \le 10$	
Find, in standard form, an expression for x^2 .	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	(Total for Question 20 is 3 marks)
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	(Total for Question 20 is 3 marks)
20 $x = a \times 10^{\circ}$ where <i>n</i> is an integer and $\sqrt{10} \ll a \ll 10^{\circ}$ Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	(Total for Question 20 is 3 marks)
Find, in standard form, an expression for x^2 . Give your expression as simply as possible.	(Total for Question 20 is 3 marks)

P 3 8 5 7 9 A 0 1 9 2 4

Turn over 🕨

ABCD is a rectangle. AB = 10 cm. BC = 8 cm. P, Q, R and S are points on the sides of the rectangle. BP = CQ = DR = AS = x cm.

(a) Show that the area, $A \text{ cm}^2$, of the quadrilateral *PQRS* is given by the formula

 $A = 2x^2 - 18x + 80$

(3)

(b) For $A = 2x^2 - 18x + 80$ (i) find $\frac{dA}{dx}$,	
(ii) find the value of x for which A is a minimum.	
(iii) Explain how you know that A is a minimum for this value of x .	x =
(Total for Question 2	(5) 21 is 8 marks)

22 Solve the simultaneous equations

$$y = 2x - 3$$
$$x^2 + y^2 = 2$$

(Total for Question 22 is 6 marks)

P 3 8 5 7 9 A 0 2 3 2 4

Question Number	Working	Answer	Mark		Notes	
1. (a)	$\frac{24.1}{0.6} - 38.44 = 40.166 38.44$		2	M1	for 0.6 or $\frac{3}{5}$	
					or 40.166 (4 figures c truncated)	orrect rounded or
					or $40\frac{1}{6}$ or 38.44 or 38	<u>11</u> 25
		1.726666667		A1	Accept if first 4 figures truncated)	correct (rounded or
					Also accept 1.726 or $\frac{25}{150}$	$\frac{9}{5}$ or $1\frac{109}{150}$
(b)		1.73	1	B1	ft from (a) if answer to more than 3 sf	(a) is a decimal with
						Total 3 marks
Question Number	Working	Answer	Mark		Notes	(alternative method)
2.	(5 - 2) × 180 or 3 × 180 or (2 × 5 - 4) × 90 or 6 × 90 or 360 + 180		4	M1		360-(83+66+53+96) Condone 1 incorrect ext angle
	540			A1	540 seen scores M1A1	62
	"540" - (97 + 114 + 127 + 84)			M1	dep on first M1	180 - "62"
		118		A1	сао	
						Total 4 marks

IGCSE Mathematics (4MA0) Paper 3H Summer 2011

Question Number	Working	Answer	Mark	Notes
3. (a)		w(w - 9)	2	B2 Award B2 also for $(w \pm 0)(w - 9)$ B1 for factors which, when expanded & simplified, give two terms, one of which is correct except B0 for $(w + 3)(w - 3)$ SC B1 for $w(w - 9w)$
(b)	3x = -6 or 3x = 1 - 7 or 5x - 2x = -6 oe		3	M2 for correct rearrangement with x terms on one side and numbers on the other AND correct collection of terms on at least one side M1 for $5x - 2x = 1 - 7$ oe ie correct rearrangement with x terms on one side and numbers on the other
		-2		A1 cao dep on M2
(c)	y ² + 3y - 7y - 21		2	M1 for 3 correct terms out of 4 or for 4 correct terms ignoring signs or for y ² - 4y + n for any non- zero value of n
		y ² – 4y – 21		A1 cao
				Total 7 mark

Question	Working	Answer	Mark	Notes
Number				
4. (a)	1 - (0.6 + 0.3)		2	M1
		0.1		A1 Also accept $\frac{1}{10}$ or 10%
(b)	30 × 0.6		2	M1
		18		A1 cao Do not accept $\frac{18}{30}$
				Total 4 marks

Question	Working	Answer	Mark		Notes
Number					
5.	$\frac{\frac{10}{12} \text{ and } \frac{9}{12}}{\text{eg } \frac{10-9}{12}, \frac{10}{12} - \frac{9}{12}}$		2	B2	B1 for $\frac{10}{12}$ or $\frac{9}{12}$ Also accept $\frac{5\times2}{6\times2}$ or $\frac{3\times3}{4\times3}$ Alternative method B1 for both fractions correctly expressed as equivalent fractions with denominators that are common multiples of 6 and 4 eg $\frac{20}{24}$ and $\frac{18}{24}$ or $\frac{5\times4}{6\times4}$ and $\frac{3\times6}{4\times6}$ B1 (dep on first B1) for evaluation as a correct fraction which is equivalent to $\frac{1}{12}$ eg $\frac{2}{24}$ SC B1 for multiplying both sides by 12 ie 10 - 9 = 1
					Total 2 marks

Question Number	Working	Answer	Mark		Note	S
6. (a)		Rotation	3	B1	Accept 'rotate', 'rotated' etc	These marks are independent but
		90° clockwise		B1	Also accept quarter turn clockwise, -90° or 270°	award no marks if the answer is not a single transformation
		(0, 0)		B1	Also accept origin, <i>O</i>	
(b)	vertices (4,4), (4,2), (5,2)	R correct	2	B2	Condone omissi B1 for 2 correct	on of label vertices
						Total 5 marks
			•	•		

Question Number	Working	Answer	Mark		Notes
7.	3+5+7 or 15		3	M1	15 may be denominator of fraction or coefficient in an equation such as 15x = 90
	90 ÷ (3+5+7) or 90 ÷ "15" or 6 or $\frac{7}{15}$ oe			M1	dep
		42		A1	Also award for 18 : 30 : 42
					Total 3 marks

Question Number	Working		Answer	Mark		Note	25
8. (i) (ii)			3, 5, 7, 11 2, 3, 5, 7, 9, 11	2	B1 B1	cao cao (B0 if 3 or 5 or 7 or 11 repeated)	Brackets not necessary
							Total 2 marks
Question Number	Working		Answer	Mark		Note	25
9.	eg $\frac{5}{100} \times 8000 = 400$ $\frac{5}{100} \times (8000 + "400")$ = 420 $\frac{5}{100} \times (8000 + "400" + "420")$ = 441 8000 + "400" + "420" + "441"	OR 8000 × 1.05 ³		3		M1 for eg $\frac{5}{100} \times 8000$ or 4 M1 for completing method	OR M2 for 8000×1.05 ³ (M1 for 8000×1.05 or 8400 or 8000×1.05 ² or 8000×1.05 ⁴)
						Accept (1 + 0.0 to 1.05 through	5) as equivalent nout.
						SC If no other r award M1 for 8 or 9200	narks gained, 000×1.15 oe
			9261		A1	Cao	Total 2 martia
							Total 3 marks

Question Number	Working	Answer	Mark	Notes
10.		$C = \frac{3d+7}{2}$ oe	3	B3 B2 for $\frac{3d+7}{2}$ oe B2 for $C = 3d + 7 \div 2$ oe B1 for $3d + 7 \div 2$ B1 for $C = 1$ linear expression in d
				Total 3 marks

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	M1 M1 A1 B1	for finding at least four products $f \times x$ consistently within intervals (inc end points) and summing them (dep) for use of halfway values Cao
(b) 8 22 48 65 75 80 (c) Points correct	1 2	M1 A1 B1	(dep) for use of halfway values Cao
(b) 8 22 48 65 75 80 (c) Points correct	1 2	A1 B1	Cao
(b) 8 22 48 65 75 80 (c) Points correct	1 2	B1	(20
(c) Points correct	2		Cau
		B1	<u>+</u> $\frac{1}{2}$ sq ft from sensible table
Curve or line segments		B1	ft from points if 4 or 5 correct or if points are plotted consistently within each interval at the correct heights Accept curve which is not joined to the origin
(d) 5.2 indicated on cf graph	2	M1	for 5.2 indicated on cf graph
approx 36-40 from correct graph		A1	If M1 scored, ft from cf graph If M1 not scored, ft only from correct curve & if answer is correct (\pm 1/2 sq tolerance), award M1 A1
			Total 8 marks

Question Number	Working	Answer	Mark		Notes
12. (a)	$\frac{BC}{5.2} = \frac{9}{6} \text{ oe}$		2	M1	for correct, relevant proportionality statement with 3 values substituted
		7.8		A1	cao
(b)	$\frac{CE}{7.2} = \frac{6}{9} \text{ oe or } \frac{CE}{6} = \frac{7.2}{9} \text{ oe}$ or $\frac{CE}{7.2} = \frac{5.2}{"7.8"} \text{ oe or } \frac{CE}{5.2} = \frac{7.2}{"7.8"} \text{ oe}$		2	M1	for correct, relevant proportionality statement with 3 values substituted
		4.8		A1	cao
					Total 4 marks

Question	Working	Answer	Mark	Notes	
Number					
13.	$\frac{20(2x-1)}{4} + \frac{20(x-1)}{5} = 2 \times 20$ or $5(2x-1) + 4(x-1) = 40$ or $\frac{5(2x-1) + 4(x-1)}{20} = 2$ or $\frac{5(2x-1)}{20} + \frac{4(x-1)}{20} = 2$		4	M1 for clear intention to r both sides by 20 or a n 20 or to express LHS as fraction with a denom 20 or a multiple of 20 express LHS as the sun fractions with denomin 20 or a multiple of 20 May be implied by first	nultiply nultiple of s a single inator of or to n of two nators of t B1
	10x - 5 + 4x - 4 = 40 or $\frac{10x - 5 + 4x - 4}{20} = 2$ or $\frac{10x - 5}{20} + \frac{4x - 4}{20} = 2$			B1 expanding brackets (de	ep on M1)
	14x = 49 or 14x - 9 = 40 or $10x + 4x - 9 = 40 \text{ or } 14x - 49 = 0$			B1 dep on both preceding ie for a correct rearran a correct equation	marks mgement of
		3.5		A1 dep on all preceding m	narks
				To	tal 4 marks
L					

Question	Working	Answer	Mark	Notes
Number				
14.	1.75 seen		2	M1
		8		A1
				Total 2 marks

Question Number	Working	Answer	Mark		Notes
15. (a)	Splits shape into rectangle & semicircle		4	M1	May be implied by working
	$\frac{\pi \times 2.7^2}{2}$ or value rounding to 11.4 or 11.5			M1	π → 11.451105 3.14 → 11.4453 3.142 → 11.45259 Also award for equivalent multiple of π eg 3.645π, $\frac{729π}{200}$
	2 × 2.7 × 7.1 or 38.34			M1	Also accept 38.3
		49.8		A1	for 49.8 or for answer rounding to 49.78 or 49.79
(b)	$P - 2L = \pi r + 2r$ oe		3	M1	for rearranging with both r terms on one side
	$P - 2L = (\pi + 2)r$ oe			M1	for factorising a correct expression (does not depend on a correct rearrangement)
		$\frac{P-2L}{\pi+2}$ oe		A1	
					Total 7 marks

Question	Working	Answer	Mark	Notes		
16. (a)(i)		114	2	B1	Cao	
(ii)	eg angle at the centre = 2 × angle at circumference			B1	Three key points must be mentioned 1. Angle at centre/middle/O/origin 2. Twice, double, 2× or half/ $\frac{1}{2}$ as appropriate 3. angle at circumference/edge/perimeter (NOT e.g. angle D, angle ADB, angle at top, angle at outside)	
(b)		74	1	B1	cao	
					Total 3 marks	
Question	Working	Answer	Mark		Notes	
----------	--	-------------------------------------	------	----	---	--
17. (i)	$\frac{1}{2} \times \frac{2}{2}$ and no other terms		2	M1		
	$\frac{7}{7} \times \frac{6}{6}$ and no other terms					
		$\frac{2}{42}$ or $\frac{1}{21}$ oe		A1	Also accept 0.05, 0.04, 0.047, 0.048 etc Sample space method - award 2	
					marks for a correct answer; otherwise no marks	
(ii)	$\frac{1}{7} \times \frac{1}{6}$ or $\frac{2}{7} \times \frac{3}{6}$		3	M1	SC M1 for $\frac{1}{7} \times \frac{1}{7}$ or $\frac{2}{7} \times \frac{3}{7}$	
	$\frac{1}{7} \times \frac{1}{6} + \frac{2}{7} \times \frac{3}{6}$			M1	M1 for $\frac{1}{7} \times \frac{1}{7} + \frac{2}{7} \times \frac{3}{7}$	
		$\frac{7}{42}$ or $\frac{1}{6}$ oe		A1	Also accept 0.16, 0.16, 0.17, 0.166, 0.167 etc but not 0.2 Sample space method - award 3 marks for a correct answer; otherwise no marks	
					Total 5 marks	

	-			
Question Number	Working	Answer	Mark	Notes
18.	(<i>BC</i> =) 47 sin 32°		5	$M1 \text{ or for } (CD =) \frac{47 \sin 32^{\circ}}{\sin 129^{\circ}}$
	24.906 at least 3 sf (may be implied by correct <i>BD</i>)			A1 or for CD = 32.048 at least 2 sf (may be implied by correct BD)
	$\tan 51^\circ = \frac{"24.906"}{BD}$ or			M1 or for $\cos 51^\circ = \frac{BD}{"32.048"}$
	$\tan 39^\circ = \frac{BD}{"24.906"}$			
	$(BD =) \frac{"24.906"}{\tan 51^{\circ}}$ or "24.906" tan 39°			M1 or for $(BD =)$ "32.048" cos51°
		20.2		A1 for answer rounding to 20.2 (20.1686)
				Total 5 marks

Question Number	Working	Answer	Mark	Notes
19. (a)	$P = kQ^3$		3	M1 for $P = kQ^3$ but not for $P = Q^3$
	$1350 = k \times 3375$			M1 for $1350 = k \times 3375$
				Also award for $1350 = k \times 15^{\circ}$
		$P = 0.4Q^{3}$ oe		A1 $P = 0.4Q^3$ oe
				Award 3 marks if answer is
				$P = kQ^3$ oe but k is evaluated as
				0.4 in part (a) or part (b)
(b)		3200	1	B1 ft from "0.4" × 8000 except for
				k = 1, if at least M1 scored in (a)
				(at least 1 d.p. accuracy in
				follow through)
				Total 4 marks

Question Number	Working	Answer	Mark	N	otes
20.	$a^2 \times 10^{2n}$		3	M1	
		$\frac{a^2}{10} \times 10^{2n+1}$		A1 for $\frac{a^2}{10}$ oe A1 for $\times 10^{2n+1}$ oe	Award M1 A1 A1 for $\frac{a^2}{10} \times 10^{2n+1}$ even if M1 not awarded. Award M1 A1 A0 if $\frac{a^2}{10}$ oe seen. Award M1 A0 A1 if $\times 10^{2n+1}$ oe seen.
					Total 3 marks

Question	Working Answer		Mark	Notes	
21. (a)	Use of areas to obtain a correct expression must be correctly punctuated. For example $(A =) 80 - 2 \times \frac{1}{2}x(10 - x) - 2 \times \frac{1}{2}x(8 - x)$ or $10 \times 8 - \frac{1}{2}x(10 - x) - \frac{1}{2}x(10 - x) - \frac{1}{2}x(8 - x)$ or $80 - x(10 - x) - x(8 - x)$ or $80 - 2\left(\frac{10x - x^2}{2}\right) - 2\left(\frac{8x - x^2}{2}\right)$	3	B2	B1 for expression for area of triangle or pair of congruent triangles, for example $\frac{1}{2}x(10-x)$ or $\frac{1}{2}x(8-x)$ or $x(10-x)$ or $x(8-x)$ Condone omission of brackets for award of B1	
	Correct simplification of a correct expression obtain an expression which is equivalent to For example $(A =) 80 - 10x + x^2 - 8x + x^2$ or $80 - (10x - x^2) - (8x - x^2)$ or $80 - (5x - \frac{1}{2}x^2) - (5x - \frac{1}{2}x^2) - (4x $		B1	dep on B2	
(b)(i)		4 <i>x</i> – 18	5	B2	B1 for 2 of 3 terms differentiated correctly
(ii)	" $4x - 18$ " = 0			M1	
		4.5 oe		A1	cao
(iii)	(iii) eg positive coefficient of x ²			B1	
	or U shape				
	or -				
					Total 8 marks

Question	Working	Answer	Mark		Notes
22.	$x^2 + (2x - 3)^2 = 2$		6	M1 for	correct substitution
	$x^{2} + 4x^{2} - 6x - 6x + 9 = 2$ or $x^{2} + 4x^{2} - 12x + 9 = 2$			B1 (ind (2 <i>x</i>	ep) for correct expansion of $(-3)^2$ even if unsimplified
	$5x^2 - 12x + 7 (= 0)$			B1 for Con	correct simplification done omission of '= 0'
	(5x - 7)(x - 1)(= 0) or $\frac{12 \pm \sqrt{4}}{10}$ or $\frac{12}{10} \pm \frac{\sqrt{4}}{10}$ or $\frac{6}{5} \pm \frac{1}{5}$			B1 for or f qua eva or f corr	correct factorisation or correct substitution into dratic formula and correct luation of 'b ² – 4ac' or using square completion rectly as far as indicated
	$x = 1$ or $x = 1\frac{2}{5}$			A1 for dep	both values of <i>x</i> on all preceding marks
		x = 1, y = -1 x = $1\frac{2}{5}$, y = $-\frac{1}{5}$		A1 for (nee dep No i no v	complete, correct solutions ed not be paired) on all preceding marks marks for $x = 1$, $y = -1$ with working
					Total 6 marks

Question Number	Working	Answer	Mark	Notes
23.	$\frac{2\pi r^2 + 2\pi rh}{4\pi r^2} = 2$		5	M1 Also award for $\frac{\pi r^2 + 2\pi rh}{4\pi r^2} = 2$
	$2\pi r^2 + 2\pi r h = 2 \times 4\pi r^2 \text{ oe}$			M1 for $2\pi r^2 + 2\pi rh = 2 \times 4\pi r^2$ oe or $\frac{2\pi r(r+h)}{4\pi r^2} = 2$ If first M1 awarded for $\frac{\pi r^2 + 2\pi rh}{4\pi r^2} = 2$ award this second M1 also for $\pi r^2 + 2\pi rh = 2 \times 4\pi r^2$ oe
	h = 3r oe			A1 If first M1 awarded for $\frac{\pi r^2 + 2\pi rh}{4\pi r^2} = 2 \text{ and second M1}$ for $\pi r^2 + 2\pi rh = 2 \times 4\pi r^2$ oe Award this A1 also for $h = 3.5r$ oe
	$\frac{\pi r^2 \times "3r"}{\frac{4}{3}\pi r^3}$ oe			M1 dep on first two M1s h must be of the form kr
		$\frac{9}{4}$ Oe		A1
				Total 5 marks

Write your name here						
Surname	Other nam	es				
Edexcel IGCSE	Centre Number	Candidate Number				
Mathema Paper 4H						
		Higher Tier				
Friday 10 June 2011 – Mor	ning	Paper Reference				
Time: 2 hours	-	4MA0/4H				
You must have: Ruler graduated in centimetres an pen, HB pencil, eraser, calculator.	nd millimetres, protractor, cor Fracing paper may be used.	mpasses,				

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided there may be more space than you need.
- Calculators may be used.
- You must **NOT** write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ►

	Answer ALL TWENTY FOUR questions.
	Write your answers in the spaces provided.
	You must write down all the stages in your working.
1	In a sale, normal prices are reduced by 15%. The normal price of a television was \$640
	Work out the sale price of the television.
	1
	\$
	(Total for Question 1 is 3 marks)
2	John throws a biased coin 120 times.
	It shows heads 90 times.
	(a) John throws the coin once more.
	Work out an estimate for the probability that the coin shows tails .
	(2)
	Carly throws the same coin 200 times
	(b) Work out an estimate for the number of times the coin shows tails
	(b) work out an estimate for the number of times the com shows tans.
	(2)
	(Total for Question 2 is 4 marks)
	P 3 8 5 7 7 A 0 3 2 4

3	Here is a list o	f ingredients f	for making A	ople and I	Raspberry	Crumble fo	r 6 r	beople.
0		i ingreatents i	or making r	ippic und i	(uspoony)		101	Jeopie.

_	_			
	Apple an	nd Raspberry Crumble		
	Ingredients fo	or 6 people		
	120 grams 230 grams 200 grams 160 grams 90 grams	plain flour apples raspberries soft brown sugar butter		
Sam wants to make Apple She has enough plain flour	and Raspberry , soft brown su	Crumble for 15 people gar and butter.		
Work out the amount of ap	ples and the ar	nount of raspberries San	m needs.	
		r	apples	grams grams
		(Total f	for Question 3 is 3 i	marks)
The length of Rachael's journey takes 1 hour 2	urney from her 0 minutes.	home to work is 72 km	1.	
Work out her average speed	d in km/h.			
				km/h
		(Total f	for Question 4 is 3 i	narks)

7	Six numbers have a mean of	` 5					
/	Six numbers have a mean of	5					
	Five of the humbers are						
		3	2	7	6	2	
	The other number is x .						
	Work out the value of <i>x</i> .						
							<i>x</i> =
-					(Tota	al for Question	7 is 3 marks)
		Ι	Do NOT v	vrite in	this spac	e	
							-

8	Use compasses and a ruler only to construct the perpendicular bisector of the line PQ.
	You must show all construction lines.

(Total for Question 8 is 2 marks)

— Q

P

-

0 The length of a fence is 137 metres, correct to the nearest metre					
Write down					
(i) the lower bound for the length of the fence,					
	metres				
(ii) the upper bound for the length of the fence.					
	metres				
(Total for Ouestion 9	is 2 marks)				
10 Express 126 as a product of its prime factors.	······································				
(Total for Question 10	is 3 marks)				
	0				

13 The table gives the diameters, in metres, of four planets.

Planet	Diameter (metres)
Mercury	4.88×10^{6}
Venus	1.21×10^{7}
Earth	1.28×10^{7}
Mars	6.79×10^{6}

(a) Which planet has the largest diameter?

(b) Write 6.79×10^6 as an ordinary number.

Give your answer in standard form.

of Mercury.

(1)

(1)

..... metres

(2)

(Total for Question 13 is 4 marks)

(c) Calculate the difference, in metres, between the diameter of Venus and the diameter

15 (a) Simplify
$$\frac{8(x-3)^2}{4(x-3)}$$

(b) Factorise $a^2 - 144$
(c) Make q the subject of the formula $p = \sqrt{q} - 5r$
(c) Make q the subject of the formula $p = \sqrt{q} - 5r$
(c) Make $q =$ ______(2)
(c) Make $q =$ ______(3)
(c) Make $q =$ _______(3)
(c) Make $q =$ _______(3)
(c) Make $q =$ __

16 The incomplete histogram and table give information about the ages of people living in a village.

Age (x years)

Age (x years)	Frequency
$0 \leqslant x < 10$	100
$10 \leqslant x < 15$	60
$15 \leqslant x < 30$	
$30 \leqslant x < 50$	
$50 \leqslant x < 75$	50
$75 \leqslant x < 80$	20

- (i) Use the histogram to complete the table.
- (ii) Use the table to complete the histogram.

(Total for Question 16 is 4 marks)

P 3 8 5 7 7 A 0 1 5 2 4

Turn over 🕨

18 Show that the recurring decimal $0.396 = \frac{44}{111}$

(Total for Question 18 is 2 marks)

19 The diagram shows triangle ABC.

Diagram **NOT** accurately drawn

Angle $BCA = 28^{\circ}$ Angle $CAB = 134^{\circ}$ BC = 10.2 cm.

Calculate the length of *AB*. Give your answer correct to 3 significant figures.

..... cm

(Total for Question 19 is 3 marks)

20
$$f(x) = \frac{2}{x}$$

 $g(x) = \frac{x+1}{x}$
(a) State which value of x cannot be included in the domain of f or g.
(b) Solve $gf(\alpha) = 3$
(c) Express the inverse function g ' in the form g '(x)
 $g^{-1}(x) = \frac{3}{3}$
(c) Express the inverse function g ' in the form g '(x)

21 Clare buys some shares for \$50*x*. Later, she sells the shares for (600 + 5x). She makes a profit of x% $x^2 + 90x - 1200 = 0$ (a) Show that (3) (b) Solve $x^2 + 90x - 1200 = 0$ Find the value of *x* correct to 3 significant figures. *x* = (3) (Total for Question 21 is 6 marks)

23	Express	$\sqrt{48} + \sqrt{108}$	in the form $k\sqrt{6}$	where k is a surd.
----	---------	--------------------------	-------------------------	----------------------

(Total for Question 23 is 3 marks)

Do NOT write in this space

IGCSE Maths June 2011 – Paper 4H Mark scheme

Apart from questions 5b, 8, 15d, 20b, 21b, 23, 24b (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an incorrect method, should be taken to imply correct working.

Q	Working	Answer	Mark		Notes	
1.	15/100 x 640 (=96) 640 – "96"	544	3	M1 M1 dep A1	or M2 for 640 x 0.85	
					То	tal 3 marks

2. (a)	120 - 90 (=30)			M1 or 1-90/120
		30/120 oe	2	A1
(b)	"30/120" X 200 oe			M1 ft or 200 – "90/120" x 200 (i.e. 200 – "heads"/120 x 200)
		50	2	A1 ft ft if final ans < 200
				Total 4 marks

3.	15÷6 (=2.5) or 6÷15 (=0.4) or 230÷6 (=38.33) or 200÷6 (=33.33) or 6÷230 (=0.026) or 6÷200 (=0.03) 230 x "15/6" or 200 x "15/6" of	apples = 575 & raspberries = 500	3	M1 M1 dep raspberries) A1 cao SC M1M1A0 if a working	(i.e "correct" calculation for apples OR both correct answers wrong way round with/without
					Total 3 marks

4.	$72 \div 1\frac{1}{3}$ oe			B1M1 accept $72 \div 1.33$ (2dp or better) or $0.9 \ge 60$ (B1 M0 for $72 \div 1.2(0)$ {=60} or $72 \div 80$ {=0.9}
		54	3	or 72 ÷ 1.3 {=55.4 or better}) or 72000 ÷ 1.33(or better) A1 cao
				Total 3 marks

5. (a) (i)		a^4	1	B1 not a4 accept upper case A
(a) (ii)		30ab	1	B1 accept ab30, 30ba, a30b,b30a (no x signs allowed)
				accept upper case A and/or B
(a) (iii)		q^6	1	B1 accept upper case Q
(b)	5 - 12 = 2y oe			M1 or $5 - 12 \div 2$ or $12 - 5 \div - 2$
		- 3.5 oe	2	A1 ans dependent on M1 (above numerical methods
				acceptable)
(c)	$6^2 - 2 \ge 6 = 6$			M1 accept 36 – 12
		24	2	A1
				Total 7 marks

6. (a)	$\frac{1}{2}(6+8)x5 \text{ or } \frac{1}{2}x2x5+6x5$			M1
		35	2	A1
(b)	8 - 6 (=2) and 5 seen			B1 could be seen on diagram
	$(PQ^2=)("8-6")^2+5^2(=29)$			M1 (dep) $(\theta=) \tan^{-1} (5/3^{-} - 6^{-}) (=68.2 \text{ or better})$
	(PQ=) √"29"			M1 (dep) (PQ=) "8–6"/ cos "68.2" or 5 / sin "68.2"
		5.39	4	A1 5.38516 awrt 5.39
				Total 6 marks

7.	6x5 (= 30) or 3+2+7+6+2			M1
	(=20)			
	or (3+2+7+6+2 +"x")/6=5			M1 dep
	"30" – "20"	10	3	A1

		Total 3 marks

8.	Inters	secting arcs from P and Q		B1	arcs must intersect above and below line PQ
	Perpe	endicular bisector joining both arcs	2	B1 de	р
					Total 2 marks

9. (i)	136.5	1	B1
(ii)	137.5 or 137 .49 recurring or	1	B1 dot above 9 for recurring or 137.499 (i.e. 499 or
	137.499		better)
			Total 2 mark

10.	3 or more correct factors of which 2 are from 2,3,3,7			M1	e.g 2 x 3 x 21 or 2, 3, 21 must multiply to 126 could be implied from a factor tree or division ladder
	All 4 correct prime factors &	2, 3, 3, 7 or 2, 3, 3, 7, 1 or		M1	could be implied from a factor tree or division ladder
	no extras (ignore 1 s)	2x3x3x/x1	3	A1	any order, do not accept inclusion of 1's
		2 x 3 x 3 x 7			must be a product on answer line (dots or crosses)
					Total 3 marks

11.	Use of $\sin 42$ or $\cos (90 - 42)$			M1	$9.3^2 - (9.3 \cos 42)^2 (=38.72)$	
	9.3 x sin 42 or 9.3 cos (90 –			M1	$\sqrt{(38.72)}$ (M1 dep)	
	42)	6.22	3	A1 awrt 6.22	6.22(2914)	
						Total 3 marks

12. (i)	$2x \ge 6 - 13$ oe			M1 Condone $2x > 6 - 13$ oe
				A1 mark response on answer line (do not isw)
		$x \ge -3.5$ oe	2	correct answer with no working = M1A1
(ii)		-3, -2, -1	2	B2 any order B1 for $-3, -2, -1, 0$

Total 4 marks			
			Total 4 marks

13. (a)		Earth	1	B1 or 1.28×10^7	
(b)		6790000	1	B1	
(c)	$1.21 \times 10^7 - 4.88 \times 10^6$ oe			M1 or sight of digits 722	
		7.22×10^6	2	A1	
					Total 4 marks
14.	7×3^2			M1 for 3 ² or 9 or $\frac{1}{2}$ or $(\frac{1}{2})^{2}$	
		63	2	A1	
					Total 2 marks

15. (a)	Correct cancelling 8 & 4 or			M1	
	brackets	2(x-3) oe	2	A1	
(b)		(a + 12)(a - 12)	2	B2	B1 for $(a \pm 12)(a \pm 12)$
(c)	$p+5r (=\sqrt{q})$			M1	
		$(p+5r)^2$ oe	2	A1	do not isw (e.g. proceed onto $p^2 + 25r^2$)
(d)	4 = 5(y - 4) oe			M1	or $(y-4)/4 = 1/5$
	4+(5x4)=5y	must be 5 x 4 or 20 or LHS = 24		M1	4/5 = y - 4
		4.8 oe	3	A1	dep on M2 correct answer only = M0M0A0
					Total 9 marks

16. (i)			M1 1 square = 10 people or any correct fd value seen in correct place with no
	120,100	2	errors A1 both values correct
(ii)	Blocks at 5, 1, 2 squares	2	B1B1 for all 3 correct blocks, B1B0 for 1 or 2 correct blocks.
			Total 4 marks

17. (a)	$\frac{7}{2}$ for not late		B1	on lower first branch
	8 Correct binary structure		B1	4 branches needed on RHS
	ALL labels and values correct	3	B1	

(b)	(1/8) x "(7/8)" or "(7/8)" x (1/8 (1/8) (1/8) x "(7/8)" + "(7/8)" x (1/8 (1/8)	8) or (1/8) x (1/8) x			M1 ft Any 1 "correct" product M1 ft 3 "correct" products with intention to add. Only ft probabilities < 1 or M2 for $1 - (\frac{7}{8})^2$ "
			$\frac{15}{64}$	3	A1 cao (0.234375)
					Total 6 marks
18.	x = 0.396396 1000x = 396.396 999x = 396		$\frac{44}{111}$	2	M1 A1 must reach $\frac{396}{999}$ or equivalent fraction (but not $\frac{44}{111}$)
					Total 2 marks
	1	1			

19.	$\frac{AB}{\sin 28} = \frac{10.2}{\sin 134}$			M1
	$(AB =) \sin 28 x \frac{10.2}{\sin 134}$	6.66	3	M1 isolate AB correctly (14.17 or 14.18 or 14.2 for $\frac{10.2}{\sin 134}$) A1 (6.65695) awrt 6.66
				Total 3 marks

20. (a)		(<i>x</i> =)0	1	B1 Accept $(x) \neq 0$
(b)	$\left(\frac{2}{2}+1\right)/\frac{2}{2}=3$			M1 (Any letter in place of <i>a</i> acceptable) Solve $g(x)=3$
	a a			(x=0.5)
	$\frac{2}{a} + 1 = \frac{6}{a}$ or $1 + \frac{a}{a} = 3$ oe			
	a a 2	4	3	M1 Solve $f(a)=0.5$
		4	3	M1 Solve $f(a)=0.5$

				A1 dep on M2	
(c)	$y = \frac{x+1}{x}$ $x (y-1) = 1$ $x = \frac{1}{y-1}$			M1 one occurrence of x	$x = \frac{y+1}{y}$ reverse labels x and y y $(x-1) = 1$ one occurrence of y
		$\frac{1}{x-1}$	3	A1 reverse labels x and y	
					Total 7 marks

21. (a)	$\frac{(600+5x)-50x}{50x} \ge 100 = x \text{ oe}$	$50x \ x \left[1 + \frac{x}{100}\right] = 600 + 5x \ oe$		M1 $\frac{actual profit}{original} \ge 100 = x$	$\left(\frac{(600+5x)}{50x}-1\right) \ge 100 = x \text{ oe}$
	$100(600 + 5x - 50x) = 50x^2 \text{ oe}$	$5000x + 50x^2 = 60000 + 500x$		M1 dep (removing denominator)	$(600 + 5x - 50x) \ge 100 = 50x^2$
	$2(600-45x)=x^2$ oe (but not ans)	$x^2 = 1200 - 90x$	3	A1 reducing to $1x^2$ dep on M2	$1200 - 90x = x^2$
(b)	$x = \frac{-90 \pm \sqrt{90^2 - 4x1x - 1200}}{\frac{2}{90 \pm \sqrt{8100 + 4800}}}$			M1 condone 1 sign error {workin sign error = +90 instead of - 90 c M1	ng can be seen in part a)} or +1200 instead of -1200
	2	11.789	3	A1 dep on M2 awrt 11.8 (ignore	negative root).
					Total 6 marks

22. (a)	(AC2 =) 52 + 72 (=74)(AG2 =) "74" + 32 (=83)			M1 or AC = 8.6 or $(BG^2) = 3^2 + 7^2$ (=58) or $(AF^2) = 3^3 + 5^2$ (AG ² =) "58" + 5 ² (=83)
	$(AG =) \sqrt{33}$	9.11	3	M1 ft (dep on M1) M1M1 for $\sqrt{(5^2 + 7^2 + 3^2)}$ A1 awrt 9.11
(b)	$\sin\theta = 3/\sqrt{"83"}$			M1 or $\cos \theta = \sqrt{74''} \sqrt{83''}$ or $\tan \theta = 3 / \sqrt{74''}$

			or $\cos \theta = \frac{"74" + "83" - 9}{2 x \sqrt{"74" x \sqrt{"83"}}}$
	19.2	2	A1 awrt 19.2 or 160.8
			Total 5 marks

23.	$\sqrt{8 \times 6} + \sqrt{18 \times 6}$	must see intention to add	M1	or $\sqrt{16 \times 3} + \sqrt{36 \times 3}$ (=	or $\sqrt{4 \times 12} + \sqrt{9 \times 12} =$
				10√3)	5√12)
	$(2\sqrt{2} \times \sqrt{6}) + (3\sqrt{2} \times \sqrt{6})$		M1	10 $\sqrt{3} \times \frac{\sqrt{2}}{\sqrt{2}}$ or $\frac{10\sqrt{3}}{\sqrt{6}}$	$5\sqrt{12} x \frac{\sqrt{2}}{\sqrt{2}}$ or $5 x \sqrt{6} x 2$
		$(k=) \sqrt{50} \text{ or } 5\sqrt{2} \text{ or } \frac{10}{7}$	A1	V2 V0	
		$\sqrt{2}$		dep on at least 1 M1	
				sight of decimals used in	
				working loses M marks at that	
				stage and A mark	
					Total 3 marks

24. (a) (i)		4 b	1	B1 4 x b etc Do not accept upper case letters
(a)		a + b	1	B1 Do not accept upper case letters
(ii)				
(a)		$3\mathbf{b} - \mathbf{a}$ oe	1	B1 needs not be simplified $(e.g - b - a + 4b)$ No upper case
(iii)				
(b)	TS=1/5 (a+b)+3b - a QT = -			M1 for any correct route from T to S or from Q to T using
	a +4/5(a + b)			capitals or lower case e.g. $TS = TR + RS$ or $QT = QP + PT$
	TS = -4/5a + 16/5b $QT = -$			
	1/5 a +4/5 b			M1 for <u>both</u> correct simplified routes from T to S and Q to T
				(must be lower case vectors here)
	TS=4/5(-a+4b) and $QT=1/5(-a+4b)$	- a		
	+4 b)	k=4	3	A1 dep on B1 in aii) and aiii) and at least M1
				Total 6 marks
				TOTAL FOR PAPER: 100 MARKS

Other nar	nes
Centre Number	Candidate Number
tics A	
	Higher Tier
)12 – Morning	Paper Reference
	Other nar

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided there may be more space than you need.
- Calculators may be used.
- You must **NOT** write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ►

Answer ALL TWENT	Y ONE questions.
------------------	------------------

Write your answers in the spaces provided.

You must write down all the stages in your working.

- In January 2007 the population of Canada was 32 million.
 7 million of these Canadian people spoke French as their first language.
 - (a) Express 7 million as a percentage of 32 million. Give your answer correct to 1 decimal place.

Between January 2007 and January 2009 the population of Canada increased by 4%.

(b) Increase 32 million by 4%. Give your answer correct to the nearest million.

..... million

(3)

(Total for Question 1 is 5 marks)

4 The lengths of the sides of a rhombus are 6 cm. The length of the longer diagonal of the rhombus is 10 cm. *AB* is a side of the rhombus.

Construct an accurate, full-size drawing of the rhombus. You must show all construction lines.

A

(Total for Question 4 is 4 marks)

В

6 cm

5 (a) Factorise
$$5a - 3a^{2}$$

(b) Expand
(i) $2(4 - 3w)$
(ii) $y^{2}(y + 10)$
(c) $W = \frac{5.6a}{b^{2}}$
 $a = 1.28$ $b = 0.8$
Work out the value of W .
 $W = \frac{1}{2}$
(2)
(Total for Question 5 is 7 marks)

6 (a) $\mathscr{E} = \{ \text{Students in Year } 12 \}$ $G = \{$ Students who study German $\}$ $F = \{$ Students who study French $\}$ $M = \{$ Students who study Maths $\}$ (i) $G \cap M = \emptyset$ Use this information to write a statement about the students who study German in Year 12 (ii) Preety is a student in Year 12 Preety $\notin F$. Use this information to write a statement about Preety. (2) (b) $A = \{2, 4, 6, 8, 10\}$ $A \cap B = \{2, 4\}$ $A \cup B = \{1, 2, 3, 4, 6, 8, 10\}$ List all the members of set *B*. (2) (Total for Question 6 is 4 marks) Do NOT write in this space.

7 The table shows information about the numbers of text messages sent by 40 teenagers in one day.

Number of text messages	Number of teenagers	Mid-interval value	
0 to 2	3	1	
3 to 5	6	4	
6 to 8	10		
9 to 11	15		
12 to 14	5		
15 to 17	1		

(a) Write down the modal class.

(1)

(b) (i) Work out an estimate for the mean number of texts sent by the 40 teenagers in one day.

(ii) Explain why your answer to part (b)(i) is an estimate.

(5)

(Total for Question 7 is 6 marks)

8	A bag contains 60 beads. x of the beads are red and the rest are green. Altaaf takes at random a bead from the bag.	
	(a) State, in terms of x , the probability that Altaaf takes a red bead.	
	 Altaaf puts his bead back in the bag. Another 20 red beads are added to those in the bag. The probability that Altaaf takes a red bead is now doubled. (b) (i) Use this information to write down an equation in <i>x</i> and show that your equation can be expressed as 8x = 3(x + 20) 	(1)
	(ii) Solve 8x = 3(x + 20) Show your working clearly. x = (Total for Question)	=(5) <u>n 8 is 6 marks)</u>
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 Turn over

P 4 0 6 1 2 A 0 1 0 2 0

10	A bank pays compound interest of 6% per annum on its savings accounts. Julia invests \$7500 for 3 years.
	Calculate the total interest gained after 3 years.
	\$
	(Total for Question 10 is 3 marks)
11	Make y the subject of $3(y+2x-1) = x + 5y$
	<i>y</i> =
	(Total for Question 11 is 3 marks)
	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $

P 4 0 6 1 2 A 0 1 4 2 0

15 Two small magnets attract each other with a force, F newtons.F is inversely proportional to the square of the distance, d cm, between them.	
When $d = 2, F = 12$	
(a) Express F in terms of d .	
	(3)
(b) Calculate the value of F when $d = 5$	
F =	(1)
(c) Calculate the value of d when $F = 3$	
d =	(2)
(Total for Question 1	5 is 6 marks)

16 The incomplete table shows information about the times, in minutes, that runners took to complete a race.

Time (<i>t</i> minutes)	$30 \leqslant t < 35$	$35 \leqslant t < 40$	$40 \leqslant t < 50$	$50 \leqslant t < 60$	$60 \leqslant t < 80$
Number of runners	12	20		12	16

(2)

(a) Use the histogram to calculate the number of runners who took between 40 and 50 minutes to complete the race.

P 4 0 6 1 2 A 0 1 6 2 0

Runners who achieved a time between 37 and 48 r each awarded a silver medal.	ninutes to complete the race were
(c) Calculate an estimate of the number of runners	awarded silver medals.
	(2)
	(Total for Question 16 is 6 marks)
17 Show that the recurring decimal $0.17 - \frac{8}{3}$	
17 Show that the recurring decimal $0.17 = \frac{45}{45}$	
	(Total for Question 17 is 2 marks)

AOD is a diameter of a circle, with centre O and radius 9 cm. ABC is an arc of the circle. AC is a chord. Angle $ADC = 35^{\circ}$

Calculate the area of the shaded segment. Give your answer correct to 3 significant figures.

(Total for Question 18 is 6 marks)

19 Show that $\frac{\sqrt{3} + \sqrt{27}}{\sqrt{2}}$ can be expressed in the form \sqrt{k} where k is an integer. State the value of *k*. *k* = (Total for Question 19 is 3 marks) **20** Simplify fully $\frac{4}{x} + \frac{3}{2-x}$ (Total for Question 20 is 3 marks) 19

P 4 0 6 1 2 A 0 1 9 2 0

January 2012 International GCSE Mathematics (4MA0) Paper 3H Mark Scheme

Question	Working	Answer		Mark		Notes
1 (a)	7/22 x 100 cc				M1	
1. (a)	7/32 x 100 0e		21.9	2	Al	(21.875) accept awrt to 21.9
(b)	4/100 x 32 (=1.28) or 4/100 x	x 32000000 (=1280000)			M1	M2 for 32 x 1.04 oe or 32000000 x 1.04 oe
	32 + "1.28" or 320000	000 + "1280000")			M1	(dep)
			33	3	A1	(33.28) accept 33.3, 33000000, 33300000, 33280000
						Total 5 marks
2	2/5 20			[M1	
2.	2/3 X 30		12	2		$12 \text{ out of } 20 - M1 \wedge 1 = 12/20 - M1 \wedge 0$
			12	2	AI	Total 2 marks
3.	$\pi \ge 7.5^2 \ge 26$				M2	M1 for $\pi x 15^2 x 26$ or 18369 \rightarrow 18386 inc
			4590	3	A1	(4594.579) accept answers 4592 →4597 inc
						Total 3 marks
	1	1		I	1	
4.	Arcs of length 6cm from A and B				M1	
	Arc of length 10 cm from A <u>or</u> B				M1	
	Arc of length 6 cm from correct to	op vertex			M1	
				4	A1	Dependent on M3
	Correct mombus within overlay to	lerance		4	sc B	1 for correct rhombus with no construction lines.
						Total 4 marks
		I	(5. 0.)			
5. (a)			a(5 - 3a)	2	B 2	B1 for factors which when expanded & simplified give 2
(b) (i)			9 6m	1	D1	terms for which one is correct.
(0)(1)			$\frac{\delta - 0W}{w^3 + 10w^2}$	2		B1 for y^3 or $10y^2$
(1)	7 168 / 0 64		<u>y 10y</u> 11.2	2	B2 B2	B1 for 7 168 or 0.64
	/.100 / 0.01		11.4	2	102	Total 7 marks

6. (a) (i)	Does not study Maths	1	B1	Accept general answers (e.g. no student belongs in both
	No student studies (both) German and Maths			sets).
	Students who study German do not study Maths			
	etc			
(ii)	(Preety) does not study French	1	B1	Accept she /he in place of Preety or omission of name.
	(Preety) is not a member of (set) F			Penalise extra incorrect statements (e.g. Preety studies
				Maths and German but not French)
(b)	1,2,3,4	2	B2	B1 for any 3 correct with no repetitions or additions.
				Total 4 marks

7. (a)		9 to 11	1	B1	
(b) (i)	(1 x 3) + (4 x 6) + (7 x 10) + (10)			M2	All products, $t \ge f$ using $\frac{1}{2}$ way points correctly, and
	x 15) + (13 x 5) + (16 x 1)				intention to add.
	(=328)				Award M1 if all products, $t \ge 1$ x f using their $\frac{1}{2}$ way
					points consistently, from 6 to 8 interval onwards and
					intention to add.
	"328" ÷ ("3+6+10+15+5+1")			M1	(dep on one at least M1)
		8.2	4	A1	Accept 8 with working. 8 without working = $M0A0$
(ii)		Mid-points used as actual data is		B1	Mention of mid-points or exact (actual) data is unknown.
		unknown	1		
					Total 6 marks

8. (a)		<i>x</i> /60 oe	1	B1 Must be a fraction or 0.016 rec <i>x</i>
(b) (i)	2(x/60) = (x+20)/80			M2 (must be an equation) M1 for either $2(x/60)$ or $(x+20)/80$
	16(0) x = 6(0)(x + 20)			A1 dep Correct removal of denominators.
	or $80 x = 30(x + 20)$		3	Correct removal of denominators.
	or $2x/3 = (x + 20)/4$			Simplifying denominators.
(ii)	$8x = 3x + 60$ or $5x = 60$ or $60 \div 5$			M1
		12	2	A1 Dependent on M1. Can be marked if seen in b(i)
				Total 6 marks

9. (a)	Use of sine or $\frac{\sin x}{3.4} = \frac{\sin 90}{5.8}$			M1 Sine must be selected for use.
	sin "x" = 3.4 / 5.8 (=0.586)	35.9	3	M1 A1 (35.888)Use isw on awrt 35.9
(b) (i)		585	1	B1 accept 5 849 rec
(ii)		5.75	1	B1
				Total 5 marks

10.	6/100 x 7500 (=450) {Ist Year} or	1.06 x 7500 (=7950)			M1	M2 for 1.06 ³ x 7500 (=8932.62)
	"450" + "477" + "505.62"				M1	Calculating 6% of previous capital for another 2 years.
			1432.62	3	A1	M1A0 for 1350 or 8850
						Total 3 marks

11.	3y + 6x - 3 = x + 5y			M1 Multiplying out brackets.
	5x - 3 = 2y oe			M1 dep Correctly collecting like terms, (3 terms needed here).
		(5x-3)/2	3	A1 oe
				Total 3 marks

12. (a)	6/9 x 12 oe			M1 e.g 12 ÷ 1.5
		8	2	A1
(b)	9/6 (or 12/"8") x 5			M1
		7.5	2	A1 cao
(c)	$1.5^2 \ge 32 (=72)$ oe			M1 M1 for 1.5^2 or $(2/3)^2$
	"72" – 32			M1 dep
		40	3	A1
				Total 7 marks

13. (a) (i)		41°		B1	
(ii)		Angles in same segment (are equal)	2	B1	Accept "from same chord", "on same arc".
(b) (i)		75°		B1	
(ii)					
	An	gle at centre/middle is not 2 x angle at		B1	Accept $75 \neq 2 \ge 41$ or $75 \neq 2 \ge 34$
		circumference / edge / perimeter / arc			
	or Angle PQT	\neq QPT or PRS \neq RSQ (oe) or 34 \neq 41	2		or using idea of isosceles triangles but must mention angles.
					Total 4 marks

14. (a)	y = 36 - x			M2 M1 for $x + y = 36$ oe or $2y = 72 - 2x$
		(Area =) x (36 - x)	3	A1 Must see x times $(36 - x)$ dep on M2
(b)		(dA/dx) = 36 - 2x	2	B1 B1 B1 for 36 B1 for $-2x$
(c)	"36 - 2x" = 0			M1 allow ft only on $a + bx$ ($a, b \neq 0$)
	x = 18			A1ft
		(Area =) 324	3	A1ft
				Total 8 marks

15. (a)	$F = "k"/d^2$			M1 $k=$ letter not number.
	$12 = k/2^2$			M1
	k = 48			
		$\mathbf{F} = 48/d^2$	3	A1 Award 3 marks for $F = "k"/d^2$ and $k = 48$ stated anywhere,
				unless contradicted by later work.
(b)	$(F =) "48"/5^2$	1.92 oe	1	B1 ft $k \neq 1$ accept 48/25 as an answer.
(c)	$3 = "48"/d^2$			$\mathbf{k} \neq 1$
	$d^2 = 48''/3$			M1 Rearrangement to make d^2 or d the subject
		4	2	A1 ignore \pm
				Total 6 marks

16. (a)	10 x 3 or 15 x 2 or 12 x 7.5/3			M1 c	or any correct fd in correct position and no errors,
				C	or 1 sq = 2 (runners) indicated.
		30	2	A1	
(b)	Missing blocks = 6cm, 10cm, 2cm		2	B2 3	3 correct blocks B1 1 or 2 correct blocks
(c)	0.6 x 20 + 0.8 x "30"			M1 ((partitioning blocks)
	or 3 x "4" + 8 x "3"			((time x fd's) {must see clear evidence that fd values used}.
	or 450 x 0.08			4	450 small squares.
		36	2	A1 cao	
					Total 6 marks

17.	x = 0.1777 and $10x = 1.7779x = 1.6$	16/90 oe	See at least 3 sevens or recurring symbol. Condone omission of x . M1 Accept $10x = 1.777$. and $100x = 17.77$. A1 Must be integers in numerator and denominator
			but not 8 & 45 N B for 0.1777 = $1/10 \pm 0.0777$
			(0.777 needs to be shown to be 7/90 to gain first M1)
			Total 2 marks

18.	$AOC = 70^{\circ}$			B1 Could be marked on diagram.
	"70"/360 x π x 9 ² (=49.48)			M1ft Area of sector.
	$0.5 \ge 9^2 \ge \sin (70)^2 = (38.057)$			M1ft Area of triangle. Follow through angles must be the same.
	49.48 or 38.057			A1 Either area correct to 3 sf
	"49.48" – "38.057"			M1 dep on both previous M1's
		11.4	6	A1 (11.42253) awrt 11.4
				Total 6 marks
19.	$\frac{(\sqrt{3}+3\sqrt{3})}{4\sqrt{3}}$			M1 Must see $\sqrt{27}$ reduce to $3\sqrt{3}$ alternative $\frac{\sqrt{6} + \sqrt{54}}{2}$ (or better)
	$2\sqrt{6} \text{ or } (\sqrt{48}/\sqrt{2})$			M1 den en 1st M1
	2 10 01 (140 / 12)			
		24	3	Alcao dep on M2 Accept $\sqrt{24}$ if M2 awarded.
				Total 3 marks
20.	$\frac{4(2-x)+3x}{x(2-x)}$ oe			M1
	$\frac{8-4x+3x}{x(2-x)}$			M1
		$\frac{8-x}{x(2-x)}$	3	A1 Accept $\frac{8-x}{2x-x^2}$ Single fraction needed as final answer.
				Total 3 marks

21. (a)	0.5x[(x+5)+(x+8)] = 42 (trapezium formula)			M1
	or $x (x+5) + 0.5x x(3) = 42$ (partitioning)			
	x(2x+13) = 84			M1 dep on 1 st M1 then needs to develop on to quadratic given.
	or $x^2 + 5x + 1.5x = 42$		2	
(b)	(2x+21)(x-4) (= 0) oe			B2 B1 for either factor correct or $(2x \pm 21)(x \pm 4)$
				or M1 for $x = \frac{-13 \pm \sqrt{13^2 - 4x2x - 84}}{4}$ (condone 1 sign error)
				then M1 for $x = \frac{-13 \pm \sqrt{169 + 672}}{4}$
	x = 4			A1 dep on M1 or B2
	(P=) "4" +"9" +"12" + $\sqrt{(3^2 + "4")^2}$			M1 i.e $x + (x+5) + (x+8) + \sqrt{3^2 + x^2}$ in numeric form.
		30	5	A1cao (Last two marks independent)
				N.B. Working for solving quadratic could be seen in (a) if not
				contradicted in (b).
				Total 7 marks

Write your name here		
Surname	Other nar	nes
Edexcel International GCSE	Centre Number	Candidate Number
Mathema Paper 4H	tics A	
		Higher Tier
Monday 16 January 2012	– Morning	Paper Reference
Time: 2 hours		4MA0/4H
You must have: Ruler graduated in centimetres a pen, HB pencil, eraser, calculator.	nd millimetres, protractor, cc Tracing paper may be used.	ompasses,

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- You must **NOT** write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over 🕨

\bigcap	
	Answer ALL TWENTY TWO questions.
	Write your answers in the spaces provided.
	You must write down all the stages in your working.
	67.25
1	Work out the value of $\frac{6.7 - 2.5}{2.8 \times 0.4}$
	Give your answer as a decimal.
_	(Total for Question 1 is 2 marks)
2	An aeroplane flew from Qatar to Bahrain. The distance flown was 135 km
	The average speed was 180 km/h.
	Work out the time taken.
	Give your answer in minutes.
	minutes
	(Total for Question 2 is 3 marks)
-	
	Do NOT write in this space.

\frown		
2		
3	Solve $/x - 5 = 3x + 2$ Show your working clearly	
	Show your working clearly.	
		<i>x</i> =
	(Tota	for Ouestion 3 is 3 marks)
4	Three positive whole numbers have a median of 7 and a mean of 7	of 5
	Find the range of these three numbers.	
	(Tota)	for Question 1 is 3 marks)
	(Tota)	Tor Question 4 is 5 marks)
	Do NOT write in this space.	

6	 (a) There are 32 students in a class. All the students are either left-handed or right-handed. The ratio of the number of left-handed students to the number of right-students is 1 : 7 Work out the number of right-handed students. 	handed
	 (b) Sajid makes a scale model of a lorry. He uses a scale of 1 : 32 The length of Sajid's model lorry is 45 cm. Chitra makes a scale model of the same lorry. She uses a scale of 1 : 72 Work out the length of Chitra's model lorry. 	(2)
	 (Total for Quest	
	Do NOT write in this space.	
	6	

Turn over 🕨

Diagram **NOT** accurately drawn

ABCD is a rhombus. The diagonals AC and BD cross at the point E. AE = CE = 6 cm. BE = DE = 4 cm. Angle $AEB = 90^{\circ}$

(a) Work out the area of the rhombus.

(b) Work out the length of *AB*. Give your answer correct to 3 significant figures.

..... cm

(3)

(3)

(Total for Question 9 is 6 marks)

0 (i) Solve the inequalities $-6 < 4x \le 8$	
(ii) <i>n</i> is an integer.	
Write down all the values of <i>n</i> which satisfy $-6 < 4n \le 8$	
(Total for Question 10 i	s 4 marks)
(a) Find the Highest Common Factor (HCF) of 75 and 90	
(b) Find the Lowest Common Multiple (LCM) of 75 and 90	(2)
	(2)
(Total for Question 11 i	s 4 marks)
Do NOT write in this space.	
	9 Turn ov

13 (a) Find the gradient of the line with equation $3x + 4y = 10$				
(3)				
(b) Find the coordinates of the point of intersection of the line with equation $3x + 4y = 10$ and the line with equation $5x - 6y = 23$ Show your working clearly.				
(, ,				
(Total for Question 13 is 8 marks)				

Age (t years)	Frequency
$0 \le t \le 10$	55
$10 < t \leq 20$	60
$20 < t \leqslant 30$	40
$30 < t \leqslant 40$	22
$40 < t \leqslant 50$	13
$50 < t \leqslant 60$	10

14 The grouped frequency table gives information about the ages of 200 elephants.

(a) Complete the cumulative frequency table.

Age (t years)	Cumulative frequency
$0 < t \leqslant 10$	
$0 < t \leq 20$	
$0 \le t \le 30$	
$0 \le t \leqslant 40$	
$0 < t \leqslant 50$	
$0 < t \leqslant 60$	

(1)

15 Solve the inequality $x^2 < 16$	
(Total for Question 15	is 2 marks)
	• •
The 8 dominoes are put in a bag.	
(a) Find the probability that he takes a domino with a total of 8 spots or a domin	no with
a total of 9 spots.	
	(2)
Helima takes at random 2 dominoes from the bag of 8 dominoes without replacement.

- (b) Work out the probability that
 - (i) the total number of spots on the two dominoes is 18

(ii) the total number of spots on the two dominoes is 17

(5)

(Total for Question 16 is 7 marks)

Do NOT write in this space.

(d) Find fg(0)	
	(2)
(e) One of the solutions of $g(x) = k$, where k is a number, is $x = 1$	
Find the other solutions. Give your answers correct to 1 decimal place.	
	(3)
(f) Find an estimate for the gradient of the curve at the point where $x = 3.5$ Show your working clearly.	(3)
	(3)
(Total for Question 17 is	s 12 marks)
Do NOT write in this space.	

_

18

Diagram **NOT** accurately drawn

Calculate the value of *x*.

Give your answer correct to 1 decimal place.

x =

(Total for Question 18 is 3 marks)

Do NOT write in this space.

22

P 4 0 6 1 3 A 0 2 2 2 4

(b) Use a vector method to prove that *DEF* is a straight line.

(2)

(Total for Question 22 is 5 marks)

TOTAL FOR PAPER IS 100 MARKS

Do NOT write in this space.

January 2012 International GCSE Mathematics (4MA0) Paper 4H Mark Scheme

Apart from Questions 3, 13(b) and 17(f) (where the mark scheme states otherwise), the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
1.	$\frac{4.2}{1.12}$		2	M1 for 4.2 or 1.12 or 0.6 or $\frac{15}{4}$
		3.75		A1
				Total 2 marks

2.	135		3	M1
	180			
	0.75 oe			Al
		45		A1 cao
				Total 3 marks

3.	4x = 7 or 4x = 2 + 5 or $7x - 3x = 7 \text{ oe}$ or $4x - 7 = 0 \text{ oe}$		3	M2 for correct rearrangement with x terms on one side and numbers on the other AND collection of terms on at least one side or for $4x - 7 = 0$ oe M1 for $7x - 3x = 2 + 5$ oe ie correct rearrangement with x terms on one side and numbers on the other
		$1\frac{3}{4}$ oe		A1 Award full marks for a correct answer if at least 1 method mark scored
				Total 3 marks

4.	177		3	B2 for 1 7 7 in any order
				B1 for three positive whole
				numbers with either a median of 7
				or a sum of 15
				SC Award B1 for 0 7 8
		6		B1 cao
				Total 3 marks

5.	One correct point plotted or stated		4	B1 May appear in table
	2nd correct point plotted or stated			B1 May appear in table
	Correct line between $x = -2$ and $x = 4$			B2 B1 for a line joining two correct, plotted points
				Total 4 marks

6.	(a)	1 + 7 or 8		2	M1	8 may be denominator of fraction or coefficient in an equation such as 8x = 32	<i>SC</i> If M0 A0, award B1 for 4 : 28
			28		A1	cao	
	(b)	32 × 45 or 1440 or 14.4(0)m		3	M1		
		<u>"1440"</u> 72			M1	dep	
			20		A1	cao	
						Tot	tal 5 marks

7.	Fully correct factor tree or repeated division		3	M2 M1 for factor tree or repeated
	or 2, 2, 2, 5, 5 or $2 \times 2 \times 2 \times 5 \times 5$			division with 2 and 5 as factors
		$2^3 \times 5^2$		A1 Also accept $2^3.5^2$
				Total 3 marks

8.	$y^{3+n-1} = y^{6}_{0e \text{ or }} y^{3+n} = y^{7}_{0e}$ or $3+n-1=6 \text{ oe}$ or $y^{n} = \frac{y^{7}}{y^{3}}$ or $y^{n} = \frac{y^{6}}{y^{2}}$ or $y^{n} = y^{4}$		2	M1		<i>SC</i> if M0, award B1 for an answer of y^4
		4		A1	cao	
						Total 2 marks

9. (a)	Complete, correct expression which, if correctly evaluated, gives 48 eg $4 \times \frac{1}{2} \times 6 \times 4$, $2 \times \frac{1}{2} \times 12 \times 4$, $\frac{1}{2} \times 12 \times 8$		3	M2 M1 for correct expression for an of one relevant triangle eg $\frac{1}{2} \times 6 \times 4$, $\frac{1}{2} \times 6 \times 4 \sin 90^\circ$, $\frac{1}{2} \times 8 \times 6$, $\frac{1}{2} \times 12 \times 4$		
		48		A1	cao	
(b)	$4^2 + 6^2 = 16 + 36 = 52$		3	M1	for squaring and adding	
	$\sqrt{4^2+6^2}$			M1	(dep) for square root	
		7.21		A1	for answer which rounds to 7.21 (7.211102)	
					Total 6 marks	

10. (i)	$-1\frac{1}{2} < x \le 2$	4	B2 Also accept $-\frac{3}{2} < x \le 2$ or answer
			expressed as two separate inequalities
			B1 for $-1\frac{1}{2} < x$ or $-\frac{1}{2} < x$ or $x \le 2$ (these may be as part of a
			double-ended inequality)
			or $-\frac{6}{4} < x \le \frac{6}{4}$
(ii)	-1 0 1 2		B2 B1 for 4 correct and 1 wrong
			or for 3 correct and 0 wrong
			Total 4 marks

11. (a)	75 = 3×5^2 and $90 = 2 \times 3^2 \times 5$ or 1,3,5,15,25,75 and 1,2,3,5,6,9,10,15,18,30,45,90 or 3×5		2	M1 Need not be accept produ and 2,3,3,5 Prime factor	products of powers; acts or lists ie 3,5,5
		15		factor trees	or repeated division
(b)	$2 \times 3^{2} \times 5^{2} \text{ oe eg } 6 \times 3 \times 5^{2}$ or 75,150,225,300,375,450 and 90,180,270,360,450		2	M1 Also award	for $\frac{75 \times 90}{15}$
		450		A1	
					Total 4 marks

12.	(a)	Rotation	3	B1			
		90°		B1	Also accept quarter turn or -270° (B0 for 90° clockwise)	These indepe award the ans a singl	marks are ndent but no marks if swer is not e
		(0, 0)		B1	Also accept origin, O	transfo	ormation
	(b)	R correct	1	B1			
	(c)	Rotation 90°	2	B1	Accept quarter -270° instead o	turn or f 90°	As for (a)
		(3, 1)		B1	ft from their R is a translation of correct R	if it is the	
						Tot	al 6 marks

13. (a)	4y = 10 - 3x or $-4y = 3x - 10$		3	M1	May be implied by second M1 or
					by $y = -\frac{3}{4}x + c$ even if value of c
					is incorrect.
					or finds coordinates of 2 points on the line $(0, 2, 5)$
					the line eg $(0, 2.5)$, $x = 2$, $y = 1$, table diagram
	5 3 10 3			M1	or for clear attempt to evaluate
	$y = \frac{3}{2} - \frac{3}{4}x$ oe or $y = \frac{10}{4} - \frac{3}{4}x$ oe				$\frac{\text{vert diff}}{\text{max}}$ for their pts
	or $y = \frac{10 - 3x}{4}$ oe				horiz diff
		$-\frac{3}{4}$		A1	Award 3 marks for correct answer if either first M1scored or no working shown.
					SC If M0, award B1 for $-\frac{3}{4}x$

13 (b)	eg $9x + 12y = 30$ 10x - 12y = 46	eg $15x + 20y = 50$ 15x - 18y = 69		5	M1	for coefficients of x or y the same or for correct rearrangement of one equation followed by correct substitution in the other eg $5x - 6\left(\frac{10 - 3x}{4}\right) = 23$
	<i>x</i> = 4	$y = -\frac{1}{2}$			A1	cao dep on M1
					M1	(dep on 1st M1) for substituting for other variable
			$x = 4, y = -\frac{1}{2}$		A1	Award 4 marks for correct values if at least first M1 scored
			$(4, -\frac{1}{2})$		B1	Award 5 marks for correct answer if at least first M1 scored ft from their values of <i>x</i> and <i>y</i>
						Total 8 marks

14.	(a)	55 11	5 155 177 190 200	1	B1	cao
	(b)		Points correct	2	B1	$\pm \frac{1}{2}$ sq ft from sensible table ie
						clear attempt to add frequencies
			Curve		B1	ft from points if 4 or 5 correct
			or			or ft correctly from sensible table
			line segments			or if points are plotted consistently
						within each interval at the correct
						heights
						Accept curve which is not joined
						to the origin
	(c)	26 indicated on cf graph		2	M1	for 26 indicated on cf graph
						– accept 26-27 inc
			approx 60 from		A1	If M1 scored, ft from cf graph
			correct graph			If M1 not scored, ft only from
						correct curve & if answer is
						correct ($\pm \frac{1}{2}$ sq tolerance) award
						M1 A1
						Total 5 marks

15.	-4 < x < 4	2	B2 B1 for $x < 4$ or $x > -4$ or $x < \pm 4$
			or $x < \sqrt{16}$
			SC B1 for $-4 \le x \le 4$
			Total 2 marks

16.	(a)	$\frac{3}{8} + \frac{2}{8}$ oe		2	M1
			$\frac{5}{8}$		A1
	(b)(i)	$\frac{2}{8} \times \frac{1}{7}$ appearing once only		5	M1 Sample space method –
			$\frac{2}{56}$ or $\frac{1}{28}$		A1 for $\frac{2}{56}$ or $\frac{1}{28}$ or for 0.036 or for answer rounding to 0.036 marks
	(ii)	$\frac{2}{8} \times \frac{3}{7} + \frac{3}{8} \times \frac{2}{7}$ or $2 \times \frac{2}{8} \times \frac{3}{7}$ oe			M1 for one correct product M1 for completely correct expression
			$\frac{12}{56}$		A1 for $\frac{12}{56}$ oe inc $\frac{3}{14}$ or for 0.21 or for answer rounding to 0.21
					Note for (b)(ii): sample space method – award 3 marks for correct answer; otherwise no marks $SC M1 \text{ for } \frac{2}{8} \times \frac{3}{8} \text{ or } \frac{3}{8} \times \frac{2}{8}$ M1 (dep) for $\frac{2}{8} \times \frac{3}{8} + \frac{3}{8} \times \frac{2}{8} \text{ oe}$ SC Sample space method – award 2 marks for $\frac{12}{64}$ oe; otherwise no marks
					Total 7 marks

						Total 12 marks
			6.5 - 11 inc		A1	dep on both M marks
						between 3.5 and 4 inc
						other point has an r_{-} coordinate
						between 3 and 3.5 inc and the
						for two points on curve, where one
						horizontal difference
						or finds then
						for two points on tan
		horizontal difference				horizontal difference
					1VI 1	finds their vertical difference
		1 1:00			M1	$(4, 11 \le y \le 14)$
						between points $(3, 3 \le y \le 6)$ and
	(f)	$\tan \operatorname{drawn} \operatorname{at} x = 3.5$		3	M1	tan or tan produced passes
						A1 for solution rounding to 3.8
						-0.7 or -0.8
			-0.7 or -0.8 3.8		A2	A1 for solution rounding to
						correct solution.
						diagram. May be implied by one
	(e)	<i>k</i> = 12		3	M1	May be stated or indicated on
			3		A1	cao If M0, award B1 for ± 3 oe
	(d)	g(0) = 15		2	M1	for 15 seen
	(c)		7	1	B1	cao
						SC B1 for x > 6
	(0)		x < 0	2	D2	or $-2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5$
1/.	$\frac{(u)}{(b)}$			2	B1 B2	cao B1 for eg $r < 6$
17.	(a)		2	1	B1	cao

18.	$(\cos x^{\circ} =) \frac{4^{2} + 6^{2} - 8^{2}}{2 \times 4 \times 6}$ or $8^{2} = 4^{2} + 6^{2} - 2 \times 4 \times 6 \cos x^{\circ}$		3	M1 for correct substitution in Cosine Rule
	$(\cos x^{\circ} =) -0.25$ oe			A1
		104.5		A1 for value rounding to 104.5 (104.4775)
				Total 3 marks

19. (a)	<i>«</i> 7	$\begin{array}{c c} A \\ \hline 10 \\ \hline 12 \\ \hline 8 \\ \hline \end{array}$	2	B2	for all correct B1 for 2 or 3 correct
(b)(i)		10	2	B1	cao
(ii)		25		B1	cao
					Total 4 marks

20.	$\pi \times r \times 9 = 100$ oe		5	M1	
	(<i>r</i> =) 3.53677			A1	for 3.53
					or for value rounding to 3.54
					$(3.14 \rightarrow 3.53857)$
	$\sqrt{9^2 - "3.53"^2}$			M1	
	(h =) 8.2759			A1	for 8.27
					or for value rounding to 8.28
		108		A1	for answer rounding to 108
					$(\pi \rightarrow 108.40$
					$3.14 \rightarrow 108.45)$
					If both M1s scored, award 5
					marks for an answer which rounds
					to 108
					Total 5 marks

21.	(a)		$8y^6$	2	B2 B1 for 8 B1 for y^6
	(b)	$2^{p} \times (2^{3})^{q} = 2^{p} \times 2^{3q} = 2^{p+3q}$	p+3q	2	B2 B1 for 2^{3q} seen
					Total 4 marks

22. (a)(i)		3 a + 3 b oe	3	B1
(ii)		2 a + 2 b oe		B1 Accept eg $\frac{2}{3}(3\mathbf{a}+3\mathbf{b})$
(iii)		a + 2 b oe		B1 Accept eg $2\mathbf{a} + 2\mathbf{b} - \mathbf{a}$
(b)	$\overrightarrow{DF} = 2\mathbf{a} + 4\mathbf{b}$ oe		2	M1 Also award for $\overrightarrow{EF} = \mathbf{a} + 2\mathbf{b}$ oe
		$\overrightarrow{DF} = 2 \overrightarrow{DE} \text{ oe}$ $\overrightarrow{DF} = 2 \overrightarrow{DE} = \overrightarrow{EF}$		A1 Also award A1 for an acceptable explanation in words.
				Total 5 marks